Search for blocks/addresses/...
Proofgold Asset
asset id
df132acfd84775e5b038c8c5cd6e6bc3bb44caea4bf0fce2fe78c374c5da87a0
asset hash
3098d9a95cde32ebfab9d3ae6f78031319231a8af2310ed80144488c4dec1720
bday / block
8134
tx
71eda..
preasset
doc published by
PrFVW..
Param
nat_p
nat_p
:
ι
→
ο
Param
nat_primrec
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Param
mul_nat
mul_nat
:
ι
→
ι
→
ι
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
nat_primrec_0
nat_primrec_0
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
nat_primrec
x0
x1
0
=
x0
Known
nat_1
nat_1
:
nat_p
1
Known
nat_primrec_S
nat_primrec_S
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
nat_p
x2
⟶
nat_primrec
x0
x1
(
ordsucc
x2
)
=
x1
x2
(
nat_primrec
x0
x1
x2
)
Known
mul_nat_p
mul_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
mul_nat
x0
x1
)
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Theorem
6523a..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
nat_p
(
x1
x2
)
)
⟶
nat_p
(
nat_primrec
1
(
λ x2 .
mul_nat
(
x1
x2
)
)
x0
)
(proof)
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
nat_inv
nat_inv
:
∀ x0 .
nat_p
x0
⟶
or
(
x0
=
0
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
nat_p
x2
)
(
x0
=
ordsucc
x2
)
⟶
x1
)
⟶
x1
)
Known
add_nat_0L
add_nat_0L
:
∀ x0 .
nat_p
x0
⟶
add_nat
0
x0
=
x0
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
add_nat_SL
add_nat_SL
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
add_nat
(
ordsucc
x0
)
x1
=
ordsucc
(
add_nat
x0
x1
)
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
neq_ordsucc_0
neq_ordsucc_0
:
∀ x0 .
ordsucc
x0
=
0
⟶
∀ x1 : ο .
x1
Theorem
93901..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
add_nat
x0
x1
=
0
⟶
and
(
x0
=
0
)
(
x1
=
0
)
(proof)
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
mul_nat_SL
mul_nat_SL
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
mul_nat
(
ordsucc
x0
)
x1
=
add_nat
(
mul_nat
x0
x1
)
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
f3fbb..
mul_nat_0_inv
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
mul_nat
x0
x1
=
0
⟶
or
(
x0
=
0
)
(
x1
=
0
)
(proof)
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
omega
omega
:
ι
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Known
In_0_1
In_0_1
:
0
∈
1
Known
cases_1
cases_1
:
∀ x0 .
x0
∈
1
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
x0
Theorem
a0ed2..
:
∀ x0 .
x0
∈
setminus
omega
1
⟶
∀ x1 .
x1
∈
setminus
omega
1
⟶
mul_nat
x0
x1
∈
setminus
omega
1
(proof)
Known
mul_nat_SR
mul_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
mul_nat
x0
(
ordsucc
x1
)
=
add_nat
x0
(
mul_nat
x0
x1
)
Known
nat_0
nat_0
:
nat_p
0
Known
mul_nat_0R
mul_nat_0R
:
∀ x0 .
mul_nat
x0
0
=
0
Known
add_nat_0R
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
Theorem
mul_nat_1R
mul_nat_1R
:
∀ x0 .
mul_nat
x0
1
=
x0
(proof)
Known
mul_nat_com
mul_nat_com
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
mul_nat
x0
x1
=
mul_nat
x1
x0
Theorem
f11bb..
:
∀ x0 .
nat_p
x0
⟶
mul_nat
1
x0
=
x0
(proof)
Param
ordinal
ordinal
:
ι
→
ο
Known
ordinal_In_Or_Subq
ordinal_In_Or_Subq
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
x0
∈
x1
)
(
x1
⊆
x0
)
Known
ordinal_ordsucc
ordinal_ordsucc
:
∀ x0 .
ordinal
x0
⟶
ordinal
(
ordsucc
x0
)
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
In_no2cycle
In_no2cycle
:
∀ x0 x1 .
x0
∈
x1
⟶
x1
∈
x0
⟶
False
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Theorem
f0633..
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
x0
⊆
x1
⟶
ordsucc
x0
⊆
ordsucc
x1
(proof)
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
add_nat_p
add_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
add_nat
x0
x1
)
Theorem
116d8..
:
∀ x0 x1 .
nat_p
x0
⟶
nat_p
x1
⟶
x0
⊆
x1
⟶
∀ x2 .
nat_p
x2
⟶
add_nat
x0
x2
⊆
add_nat
x1
x2
(proof)
Known
add_nat_com
add_nat_com
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
add_nat
x0
x1
=
add_nat
x1
x0
Theorem
abb9e..
:
∀ x0 x1 .
nat_p
x0
⟶
nat_p
x1
⟶
x0
⊆
x1
⟶
∀ x2 .
nat_p
x2
⟶
add_nat
x2
x0
⊆
add_nat
x2
x1
(proof)
Known
Subq_ref
Subq_ref
:
∀ x0 .
x0
⊆
x0
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Theorem
4324d..
mul_nat_Subq_R
:
∀ x0 x1 .
nat_p
x0
⟶
nat_p
x1
⟶
x0
⊆
x1
⟶
∀ x2 .
nat_p
x2
⟶
mul_nat
x0
x2
⊆
mul_nat
x1
x2
(proof)
Theorem
df9cc..
mul_nat_Subq_L
:
∀ x0 x1 .
nat_p
x0
⟶
nat_p
x1
⟶
x0
⊆
x1
⟶
∀ x2 .
nat_p
x2
⟶
mul_nat
x2
x0
⊆
mul_nat
x2
x1
(proof)
Theorem
6899f..
:
∀ x0 .
x0
∈
setminus
omega
1
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
omega
⟶
x0
=
ordsucc
x2
⟶
x1
)
⟶
x1
(proof)
Known
ordinal_ordsucc_In
ordinal_ordsucc_In
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
∈
ordsucc
x0
Known
ordinal_1
ordinal_1
:
ordinal
1
Known
Subq_1_2
Subq_1_2
:
1
⊆
2
Theorem
ee3ec..
:
∀ x0 .
x0
∈
setminus
omega
2
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
omega
⟶
x0
=
ordsucc
(
ordsucc
x2
)
⟶
x1
)
⟶
x1
(proof)
Theorem
add_nat_Subq_L
add_nat_Subq_R
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
x0
⊆
add_nat
x0
x1
(proof)
Theorem
3b460..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
setminus
omega
1
⟶
x0
⊆
mul_nat
x0
x1
(proof)
Theorem
e5f18..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
setminus
omega
1
)
⟶
nat_primrec
1
(
λ x2 .
mul_nat
(
x1
x2
)
)
x0
∈
setminus
omega
1
(proof)
Known
setminusE1
setminusE1
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
x2
∈
x0
Theorem
39880..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
setminus
omega
1
⟶
x0
⊆
mul_nat
x1
x0
(proof)
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Theorem
d1a0b..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
setminus
omega
1
)
⟶
∀ x2 .
x2
∈
x0
⟶
x1
x2
⊆
nat_primrec
1
(
λ x3 .
mul_nat
(
x1
x3
)
)
x0
(proof)
Definition
divides_nat
divides_nat
:=
λ x0 x1 .
and
(
and
(
x0
∈
omega
)
(
x1
∈
omega
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
omega
)
(
mul_nat
x0
x3
=
x1
)
⟶
x2
)
⟶
x2
)
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Theorem
9baed..
:
∀ x0 .
x0
∈
omega
⟶
divides_nat
x0
x0
(proof)
Known
and3E
and3E
:
∀ x0 x1 x2 : ο .
and
(
and
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
)
⟶
x3
Known
mul_nat_asso
mul_nat_asso
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 .
nat_p
x2
⟶
mul_nat
(
mul_nat
x0
x1
)
x2
=
mul_nat
x0
(
mul_nat
x1
x2
)
Theorem
e4e38..
divides_nat_tra
:
∀ x0 x1 x2 .
divides_nat
x0
x1
⟶
divides_nat
x1
x2
⟶
divides_nat
x0
x2
(proof)
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Theorem
4c147..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
nat_p
(
x1
x2
)
)
⟶
∀ x2 .
x2
∈
x0
⟶
divides_nat
(
x1
x2
)
(
nat_primrec
1
(
λ x3 .
mul_nat
(
x1
x3
)
)
x0
)
(proof)
Theorem
01ac5..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
(
∀ x2 .
x2
∈
setminus
omega
1
⟶
x1
x2
)
⟶
x1
x0
(proof)
Known
cases_2
cases_2
:
∀ x0 .
x0
∈
2
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
x0
Known
ordsucc_inj_contra
ordsucc_inj_contra
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
ordsucc
x0
=
ordsucc
x1
⟶
∀ x2 : ο .
x2
Theorem
3aff2..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
(
∀ x2 .
x2
∈
setminus
omega
2
⟶
x1
x2
)
⟶
x1
x0
(proof)
Theorem
6a866..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
or
(
x1
=
0
)
(
x0
∈
add_nat
x0
x1
)
(proof)
Theorem
20225..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
or
(
x1
=
0
)
(
x0
∈
add_nat
x1
x0
)
(proof)
Known
neq_0_1
neq_0_1
:
0
=
1
⟶
∀ x0 : ο .
x0
Known
mul_nat_0L
mul_nat_0L
:
∀ x0 .
nat_p
x0
⟶
mul_nat
0
x0
=
0
Theorem
7092d..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
mul_nat
x0
x1
=
1
⟶
and
(
x0
=
1
)
(
x1
=
1
)
(proof)
Definition
prime_nat
prime_nat
:=
λ x0 .
and
(
and
(
x0
∈
omega
)
(
1
∈
x0
)
)
(
∀ x1 .
x1
∈
omega
⟶
divides_nat
x1
x0
⟶
or
(
x1
=
1
)
(
x1
=
x0
)
)
Known
nat_complete_ind
nat_complete_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
nat_p
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
setminusE2
setminusE2
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
nIn
x2
x1
Known
In_0_2
In_0_2
:
0
∈
2
Known
ordinal_trichotomy_or_impred
ordinal_trichotomy_or_impred
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 : ο .
(
x0
∈
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
x1
∈
x0
⟶
x2
)
⟶
x2
Known
In_1_2
In_1_2
:
1
∈
2
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Theorem
b513d..
:
∀ x0 .
x0
∈
setminus
omega
2
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
omega
)
(
and
(
prime_nat
x2
)
(
divides_nat
x2
x0
)
)
⟶
x1
)
⟶
x1
(proof)
Theorem
4e482..
:
∀ x0 .
prime_nat
x0
⟶
x0
∈
setminus
omega
2
(proof)
Theorem
f7d6d..
:
∀ x0 x1 .
(
x1
=
0
⟶
∀ x2 : ο .
x2
)
⟶
divides_nat
x0
x1
⟶
x0
⊆
x1
(proof)
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Theorem
3ed2c..
:
∀ x0 x1 .
(
x1
=
0
⟶
∀ x2 : ο .
x2
)
⟶
divides_nat
x0
x1
⟶
or
(
x0
∈
x1
)
(
x0
=
x1
)
(proof)
Known
omega_ordsucc
omega_ordsucc
:
∀ x0 .
x0
∈
omega
⟶
ordsucc
x0
∈
omega
Theorem
a9ab4..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
omega
)
(
add_nat
x1
x3
=
x0
)
⟶
x2
)
⟶
x2
(proof)
Known
ordsucc_inj
ordsucc_inj
:
∀ x0 x1 .
ordsucc
x0
=
ordsucc
x1
⟶
x0
=
x1
Theorem
c6e57..
:
∀ x0 x1 .
nat_p
x0
⟶
nat_p
x1
⟶
∀ x2 .
nat_p
x2
⟶
add_nat
x0
x2
=
add_nat
x1
x2
⟶
x0
=
x1
(proof)
Theorem
0d850..
:
∀ x0 x1 x2 .
nat_p
x0
⟶
nat_p
x1
⟶
nat_p
x2
⟶
add_nat
x0
x1
=
add_nat
x0
x2
⟶
x1
=
x2
(proof)
Known
mul_add_nat_distrL
mul_add_nat_distrL
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 .
nat_p
x2
⟶
mul_nat
x0
(
add_nat
x1
x2
)
=
add_nat
(
mul_nat
x0
x1
)
(
mul_nat
x0
x2
)
Theorem
6ce5b..
:
∀ x0 .
x0
∈
setminus
omega
2
⟶
∀ x1 .
divides_nat
x0
x1
⟶
not
(
divides_nat
x0
(
ordsucc
x1
)
)
(proof)
Definition
surj
surj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
nat_ordsucc_in_ordsucc
nat_ordsucc_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
∈
ordsucc
x0
Known
nat_0_in_ordsucc
nat_0_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
0
∈
ordsucc
x0
Known
neq_0_ordsucc
neq_0_ordsucc
:
∀ x0 .
0
=
ordsucc
x0
⟶
∀ x1 : ο .
x1
Known
SepE1
SepE1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x2
∈
x0
Theorem
3a99b..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 :
ι → ι
.
not
(
surj
x0
(
Sep
omega
prime_nat
)
x1
)
(proof)
Param
bij
bij
:
ι
→
ι
→
(
ι
→
ι
) →
ο
Definition
equip
equip
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
bij
x0
x1
x3
⟶
x2
)
⟶
x2
Definition
finite
finite
:=
λ x0 .
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
omega
)
(
equip
x0
x2
)
⟶
x1
)
⟶
x1
Definition
infinite
infinite
:=
λ x0 .
not
(
finite
x0
)
Known
bij_surj
bij_surj
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
surj
x0
x1
x2
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Theorem
form100_11_infinite_primes
form100_11_infinite_primes
:
infinite
(
Sep
omega
prime_nat
)
(proof)