Search for blocks/addresses/...
Proofgold Asset
asset id
df18f5f64e89d44c397e871a6be35687a006542ab81e4adb86951909cb79ff73
asset hash
3a09375d8fd52e5bac43e36ccf19fae1e21b5b4b52b485de401577b8358b5319
bday / block
2719
tx
6c541..
preasset
doc published by
PrGxv..
Definition
False
:=
∀ x0 : ο .
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
:=
λ x0 x1 .
not
(
prim1
x0
x1
)
Known
In_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
(
∀ x2 .
prim1
x2
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
x0
x1
Theorem
In_irref
:
∀ x0 .
nIn
x0
x0
(proof)
Theorem
3dfc6..
:
∀ x0 x1 x2 .
prim1
x0
x1
⟶
prim1
x1
x2
⟶
nIn
x2
x0
(proof)
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
Eps_i_ax
:
∀ x0 :
ι → ο
.
∀ x1 .
x0
x1
⟶
x0
(
prim0
x0
)
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
Eps_i_set_R
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
x1
x2
⟶
and
(
prim1
(
prim0
(
λ x3 .
and
(
prim1
x3
x0
)
(
x1
x3
)
)
)
x0
)
(
x1
(
prim0
(
λ x3 .
and
(
prim1
x3
x0
)
(
x1
x3
)
)
)
)
(proof)
Definition
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
If_i
:=
λ x0 : ο .
λ x1 x2 .
prim0
(
λ x3 .
or
(
and
x0
(
x3
=
x1
)
)
(
and
(
not
x0
)
(
x3
=
x2
)
)
)
Known
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
If_i_correct
:
∀ x0 : ο .
∀ x1 x2 .
or
(
and
x0
(
If_i
x0
x1
x2
=
x1
)
)
(
and
(
not
x0
)
(
If_i
x0
x1
x2
=
x2
)
)
(proof)
Known
andEL
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x0
Known
andER
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x1
Theorem
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
(proof)
Theorem
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
(proof)
Theorem
If_i_or
:
∀ x0 : ο .
∀ x1 x2 .
or
(
If_i
x0
x1
x2
=
x1
)
(
If_i
x0
x1
x2
=
x2
)
(proof)
Theorem
If_i_eta
:
∀ x0 : ο .
∀ x1 .
If_i
x0
x1
x1
=
x1
(proof)
Theorem
exandE_ii
:
∀ x0 x1 :
(
ι → ι
)
→ ο
.
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
and
(
x0
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
x0
x3
⟶
x1
x3
⟶
x2
)
⟶
x2
(proof)
Theorem
exandE_iii
:
∀ x0 x1 :
(
ι →
ι → ι
)
→ ο
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
and
(
x0
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
x0
x3
⟶
x1
x3
⟶
x2
)
⟶
x2
(proof)
Theorem
exandE_iiii
:
∀ x0 x1 :
(
ι →
ι →
ι → ι
)
→ ο
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι → ι
.
and
(
x0
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι → ι
.
x0
x3
⟶
x1
x3
⟶
x2
)
⟶
x2
(proof)
Theorem
exandE_iio
:
∀ x0 x1 :
(
ι →
ι → ο
)
→ ο
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ο
.
and
(
x0
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ο
.
x0
x3
⟶
x1
x3
⟶
x2
)
⟶
x2
(proof)
Theorem
exandE_iiio
:
∀ x0 x1 :
(
ι →
ι →
ι → ο
)
→ ο
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι → ο
.
and
(
x0
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι → ο
.
x0
x3
⟶
x1
x3
⟶
x2
)
⟶
x2
(proof)
Definition
Descr_ii
:=
λ x0 :
(
ι → ι
)
→ ο
.
λ x1 .
prim0
(
λ x2 .
∀ x3 :
ι → ι
.
x0
x3
⟶
x3
x1
=
x2
)
Theorem
Descr_ii_prop
:
∀ x0 :
(
ι → ι
)
→ ο
.
(
∀ x1 : ο .
(
∀ x2 :
ι → ι
.
x0
x2
⟶
x1
)
⟶
x1
)
⟶
(
∀ x1 x2 :
ι → ι
.
x0
x1
⟶
x0
x2
⟶
x1
=
x2
)
⟶
x0
(
Descr_ii
x0
)
(proof)
Definition
Descr_iii
:=
λ x0 :
(
ι →
ι → ι
)
→ ο
.
λ x1 x2 .
prim0
(
λ x3 .
∀ x4 :
ι →
ι → ι
.
x0
x4
⟶
x4
x1
x2
=
x3
)
Theorem
Descr_iii_prop
:
∀ x0 :
(
ι →
ι → ι
)
→ ο
.
(
∀ x1 : ο .
(
∀ x2 :
ι →
ι → ι
.
x0
x2
⟶
x1
)
⟶
x1
)
⟶
(
∀ x1 x2 :
ι →
ι → ι
.
x0
x1
⟶
x0
x2
⟶
x1
=
x2
)
⟶
x0
(
Descr_iii
x0
)
(proof)
Definition
Descr_iio
:=
λ x0 :
(
ι →
ι → ο
)
→ ο
.
λ x1 x2 .
∀ x3 :
ι →
ι → ο
.
x0
x3
⟶
x3
x1
x2
Known
prop_ext_2
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
x0
=
x1
Theorem
Descr_iio_prop
:
∀ x0 :
(
ι →
ι → ο
)
→ ο
.
(
∀ x1 : ο .
(
∀ x2 :
ι →
ι → ο
.
x0
x2
⟶
x1
)
⟶
x1
)
⟶
(
∀ x1 x2 :
ι →
ι → ο
.
x0
x1
⟶
x0
x2
⟶
x1
=
x2
)
⟶
x0
(
Descr_iio
x0
)
(proof)
Definition
Descr_Vo1
:=
λ x0 :
(
ι → ο
)
→ ο
.
λ x1 .
∀ x2 :
ι → ο
.
x0
x2
⟶
x2
x1
Theorem
Descr_Vo1_prop
:
∀ x0 :
(
ι → ο
)
→ ο
.
(
∀ x1 : ο .
(
∀ x2 :
ι → ο
.
x0
x2
⟶
x1
)
⟶
x1
)
⟶
(
∀ x1 x2 :
ι → ο
.
x0
x1
⟶
x0
x2
⟶
x1
=
x2
)
⟶
x0
(
Descr_Vo1
x0
)
(proof)
Definition
Descr_Vo2
:=
λ x0 :
(
(
ι → ο
)
→ ο
)
→ ο
.
λ x1 :
ι → ο
.
∀ x2 :
(
ι → ο
)
→ ο
.
x0
x2
⟶
x2
x1
Theorem
Descr_Vo2_prop
:
∀ x0 :
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x1 : ο .
(
∀ x2 :
(
ι → ο
)
→ ο
.
x0
x2
⟶
x1
)
⟶
x1
)
⟶
(
∀ x1 x2 :
(
ι → ο
)
→ ο
.
x0
x1
⟶
x0
x2
⟶
x1
=
x2
)
⟶
x0
(
Descr_Vo2
x0
)
(proof)
Definition
If_ii
:=
λ x0 : ο .
λ x1 x2 :
ι → ι
.
λ x3 .
If_i
x0
(
x1
x3
)
(
x2
x3
)
Theorem
If_ii_1
:
∀ x0 : ο .
∀ x1 x2 :
ι → ι
.
x0
⟶
If_ii
x0
x1
x2
=
x1
(proof)
Theorem
If_ii_0
:
∀ x0 : ο .
∀ x1 x2 :
ι → ι
.
not
x0
⟶
If_ii
x0
x1
x2
=
x2
(proof)
Definition
If_iii
:=
λ x0 : ο .
λ x1 x2 :
ι →
ι → ι
.
λ x3 x4 .
If_i
x0
(
x1
x3
x4
)
(
x2
x3
x4
)
Theorem
If_iii_1
:
∀ x0 : ο .
∀ x1 x2 :
ι →
ι → ι
.
x0
⟶
If_iii
x0
x1
x2
=
x1
(proof)
Theorem
If_iii_0
:
∀ x0 : ο .
∀ x1 x2 :
ι →
ι → ι
.
not
x0
⟶
If_iii
x0
x1
x2
=
x2
(proof)
Definition
If_Vo1
:=
λ x0 : ο .
λ x1 x2 :
ι → ο
.
λ x3 .
and
(
x0
⟶
x1
x3
)
(
not
x0
⟶
x2
x3
)
Known
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Theorem
If_Vo1_1
:
∀ x0 : ο .
∀ x1 x2 :
ι → ο
.
x0
⟶
If_Vo1
x0
x1
x2
=
x1
(proof)
Theorem
If_Vo1_0
:
∀ x0 : ο .
∀ x1 x2 :
ι → ο
.
not
x0
⟶
If_Vo1
x0
x1
x2
=
x2
(proof)
Definition
If_iio
:=
λ x0 : ο .
λ x1 x2 :
ι →
ι → ο
.
λ x3 x4 .
and
(
x0
⟶
x1
x3
x4
)
(
not
x0
⟶
x2
x3
x4
)
Theorem
If_iio_1
:
∀ x0 : ο .
∀ x1 x2 :
ι →
ι → ο
.
x0
⟶
If_iio
x0
x1
x2
=
x1
(proof)
Theorem
If_iio_0
:
∀ x0 : ο .
∀ x1 x2 :
ι →
ι → ο
.
not
x0
⟶
If_iio
x0
x1
x2
=
x2
(proof)
Definition
If_Vo2
:=
λ x0 : ο .
λ x1 x2 :
(
ι → ο
)
→ ο
.
λ x3 :
ι → ο
.
and
(
x0
⟶
x1
x3
)
(
not
x0
⟶
x2
x3
)
Theorem
If_Vo2_1
:
∀ x0 : ο .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
x0
⟶
If_Vo2
x0
x1
x2
=
x1
(proof)
Theorem
If_Vo2_0
:
∀ x0 : ο .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
not
x0
⟶
If_Vo2
x0
x1
x2
=
x2
(proof)
Definition
In_rec_i_G
:=
λ x0 :
ι →
(
ι → ι
)
→ ι
.
λ x1 x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 .
∀ x5 :
ι → ι
.
(
∀ x6 .
prim1
x6
x4
⟶
x3
x6
(
x5
x6
)
)
⟶
x3
x4
(
x0
x4
x5
)
)
⟶
x3
x1
x2
Definition
In_rec_i
:=
λ x0 :
ι →
(
ι → ι
)
→ ι
.
λ x1 .
prim0
(
In_rec_i_G
x0
x1
)
Theorem
In_rec_i_G_c
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
∀ x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x1
⟶
In_rec_i_G
x0
x3
(
x2
x3
)
)
⟶
In_rec_i_G
x0
x1
(
x0
x1
x2
)
(proof)
Theorem
In_rec_i_G_inv
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
∀ x1 x2 .
In_rec_i_G
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 :
ι → ι
.
and
(
∀ x5 .
prim1
x5
x1
⟶
In_rec_i_G
x0
x5
(
x4
x5
)
)
(
x2
=
x0
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Theorem
In_rec_i_G_f
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
(
∀ x1 .
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 x2 x3 .
In_rec_i_G
x0
x1
x2
⟶
In_rec_i_G
x0
x1
x3
⟶
x2
=
x3
(proof)
Theorem
In_rec_i_G_In_rec_i
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
(
∀ x1 .
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_i_G
x0
x1
(
In_rec_i
x0
x1
)
(proof)
Theorem
In_rec_i_G_In_rec_i_d
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
(
∀ x1 .
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_i_G
x0
x1
(
x0
x1
(
In_rec_i
x0
)
)
(proof)
Theorem
In_rec_i_eq
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
(
∀ x1 .
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_i
x0
x1
=
x0
x1
(
In_rec_i
x0
)
(proof)
Definition
In_rec_G_ii
:=
λ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
λ x1 .
λ x2 :
ι → ι
.
∀ x3 :
ι →
(
ι → ι
)
→ ο
.
(
∀ x4 .
∀ x5 :
ι →
ι → ι
.
(
∀ x6 .
prim1
x6
x4
⟶
x3
x6
(
x5
x6
)
)
⟶
x3
x4
(
x0
x4
x5
)
)
⟶
x3
x1
x2
Definition
In_rec_ii
:=
λ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
λ x1 .
Descr_ii
(
In_rec_G_ii
x0
x1
)
Theorem
In_rec_G_ii_c
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x1
⟶
In_rec_G_ii
x0
x3
(
x2
x3
)
)
⟶
In_rec_G_ii
x0
x1
(
x0
x1
x2
)
(proof)
Theorem
In_rec_G_ii_inv
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
∀ x1 .
∀ x2 :
ι → ι
.
In_rec_G_ii
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 :
ι →
ι → ι
.
and
(
∀ x5 .
prim1
x5
x1
⟶
In_rec_G_ii
x0
x5
(
x4
x5
)
)
(
x2
=
x0
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Theorem
In_rec_G_ii_f
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
∀ x2 x3 :
ι → ι
.
In_rec_G_ii
x0
x1
x2
⟶
In_rec_G_ii
x0
x1
x3
⟶
x2
=
x3
(proof)
Theorem
In_rec_G_ii_In_rec_ii
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_G_ii
x0
x1
(
In_rec_ii
x0
x1
)
(proof)
Theorem
In_rec_G_ii_In_rec_ii_d
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_G_ii
x0
x1
(
x0
x1
(
In_rec_ii
x0
)
)
(proof)
Theorem
In_rec_ii_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_ii
x0
x1
=
x0
x1
(
In_rec_ii
x0
)
(proof)
Definition
In_rec_G_iii
:=
λ x0 :
ι →
(
ι →
ι →
ι → ι
)
→
ι →
ι → ι
.
λ x1 .
λ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
(
ι →
ι → ι
)
→ ο
.
(
∀ x4 .
∀ x5 :
ι →
ι →
ι → ι
.
(
∀ x6 .
prim1
x6
x4
⟶
x3
x6
(
x5
x6
)
)
⟶
x3
x4
(
x0
x4
x5
)
)
⟶
x3
x1
x2
Definition
In_rec_iii
:=
λ x0 :
ι →
(
ι →
ι →
ι → ι
)
→
ι →
ι → ι
.
λ x1 .
Descr_iii
(
In_rec_G_iii
x0
x1
)
Theorem
In_rec_G_iii_c
:
∀ x0 :
ι →
(
ι →
ι →
ι → ι
)
→
ι →
ι → ι
.
∀ x1 .
∀ x2 :
ι →
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x1
⟶
In_rec_G_iii
x0
x3
(
x2
x3
)
)
⟶
In_rec_G_iii
x0
x1
(
x0
x1
x2
)
(proof)
Theorem
In_rec_G_iii_inv
:
∀ x0 :
ι →
(
ι →
ι →
ι → ι
)
→
ι →
ι → ι
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
In_rec_G_iii
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 :
ι →
ι →
ι → ι
.
and
(
∀ x5 .
prim1
x5
x1
⟶
In_rec_G_iii
x0
x5
(
x4
x5
)
)
(
x2
=
x0
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Theorem
In_rec_G_iii_f
:
∀ x0 :
ι →
(
ι →
ι →
ι → ι
)
→
ι →
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
In_rec_G_iii
x0
x1
x2
⟶
In_rec_G_iii
x0
x1
x3
⟶
x2
=
x3
(proof)
Theorem
In_rec_G_iii_In_rec_iii
:
∀ x0 :
ι →
(
ι →
ι →
ι → ι
)
→
ι →
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_G_iii
x0
x1
(
In_rec_iii
x0
x1
)
(proof)
Theorem
In_rec_G_iii_In_rec_iii_d
:
∀ x0 :
ι →
(
ι →
ι →
ι → ι
)
→
ι →
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_G_iii
x0
x1
(
x0
x1
(
In_rec_iii
x0
)
)
(proof)
Theorem
In_rec_iii_eq
:
∀ x0 :
ι →
(
ι →
ι →
ι → ι
)
→
ι →
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_iii
x0
x1
=
x0
x1
(
In_rec_iii
x0
)
(proof)
Definition
94aee..
:=
λ x0 :
ι →
(
ι →
ι →
ι → ο
)
→
ι →
ι → ο
.
λ x1 .
λ x2 :
ι →
ι → ο
.
∀ x3 :
ι →
(
ι →
ι → ο
)
→ ο
.
(
∀ x4 .
∀ x5 :
ι →
ι →
ι → ο
.
(
∀ x6 .
prim1
x6
x4
⟶
x3
x6
(
x5
x6
)
)
⟶
x3
x4
(
x0
x4
x5
)
)
⟶
x3
x1
x2
Definition
In_rec_iio
:=
λ x0 :
ι →
(
ι →
ι →
ι → ο
)
→
ι →
ι → ο
.
λ x1 .
Descr_iio
(
94aee..
x0
x1
)
Theorem
bc67e..
:
∀ x0 :
ι →
(
ι →
ι →
ι → ο
)
→
ι →
ι → ο
.
∀ x1 .
∀ x2 :
ι →
ι →
ι → ο
.
(
∀ x3 .
prim1
x3
x1
⟶
94aee..
x0
x3
(
x2
x3
)
)
⟶
94aee..
x0
x1
(
x0
x1
x2
)
(proof)
Theorem
9f718..
:
∀ x0 :
ι →
(
ι →
ι →
ι → ο
)
→
ι →
ι → ο
.
∀ x1 .
∀ x2 :
ι →
ι → ο
.
94aee..
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 :
ι →
ι →
ι → ο
.
and
(
∀ x5 .
prim1
x5
x1
⟶
94aee..
x0
x5
(
x4
x5
)
)
(
x2
=
x0
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Theorem
0bcfd..
:
∀ x0 :
ι →
(
ι →
ι →
ι → ο
)
→
ι →
ι → ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι →
ι → ο
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
∀ x2 x3 :
ι →
ι → ο
.
94aee..
x0
x1
x2
⟶
94aee..
x0
x1
x3
⟶
x2
=
x3
(proof)
Theorem
39b30..
:
∀ x0 :
ι →
(
ι →
ι →
ι → ο
)
→
ι →
ι → ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι →
ι → ο
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
94aee..
x0
x1
(
In_rec_iio
x0
x1
)
(proof)
Theorem
a4174..
:
∀ x0 :
ι →
(
ι →
ι →
ι → ο
)
→
ι →
ι → ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι →
ι → ο
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
94aee..
x0
x1
(
x0
x1
(
In_rec_iio
x0
)
)
(proof)
Theorem
In_rec_iio_eq
:
∀ x0 :
ι →
(
ι →
ι →
ι → ο
)
→
ι →
ι → ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι →
ι → ο
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_iio
x0
x1
=
x0
x1
(
In_rec_iio
x0
)
(proof)
Definition
1d55d..
:=
λ x0 :
ι →
(
ι →
ι → ο
)
→
ι → ο
.
λ x1 .
λ x2 :
ι → ο
.
∀ x3 :
ι →
(
ι → ο
)
→ ο
.
(
∀ x4 .
∀ x5 :
ι →
ι → ο
.
(
∀ x6 .
prim1
x6
x4
⟶
x3
x6
(
x5
x6
)
)
⟶
x3
x4
(
x0
x4
x5
)
)
⟶
x3
x1
x2
Definition
In_rec_Vo1
:=
λ x0 :
ι →
(
ι →
ι → ο
)
→
ι → ο
.
λ x1 .
Descr_Vo1
(
1d55d..
x0
x1
)
Theorem
8b22b..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
ι → ο
.
∀ x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 .
prim1
x3
x1
⟶
1d55d..
x0
x3
(
x2
x3
)
)
⟶
1d55d..
x0
x1
(
x0
x1
x2
)
(proof)
Theorem
946ce..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
ι → ο
.
∀ x1 .
∀ x2 :
ι → ο
.
1d55d..
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 :
ι →
ι → ο
.
and
(
∀ x5 .
prim1
x5
x1
⟶
1d55d..
x0
x5
(
x4
x5
)
)
(
x2
=
x0
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Theorem
27d99..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
ι → ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι → ο
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
∀ x2 x3 :
ι → ο
.
1d55d..
x0
x1
x2
⟶
1d55d..
x0
x1
x3
⟶
x2
=
x3
(proof)
Theorem
dd8c7..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
ι → ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι → ο
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
1d55d..
x0
x1
(
In_rec_Vo1
x0
x1
)
(proof)
Theorem
24637..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
ι → ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι → ο
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
1d55d..
x0
x1
(
x0
x1
(
In_rec_Vo1
x0
)
)
(proof)
Theorem
In_rec_Vo1_eq
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
ι → ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι → ο
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_Vo1
x0
x1
=
x0
x1
(
In_rec_Vo1
x0
)
(proof)
Definition
cdf76..
:=
λ x0 :
ι →
(
ι →
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
λ x1 .
λ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x4 .
∀ x5 :
ι →
(
ι → ο
)
→ ο
.
(
∀ x6 .
prim1
x6
x4
⟶
x3
x6
(
x5
x6
)
)
⟶
x3
x4
(
x0
x4
x5
)
)
⟶
x3
x1
x2
Definition
In_rec_Vo2
:=
λ x0 :
ι →
(
ι →
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
λ x1 .
Descr_Vo2
(
cdf76..
x0
x1
)
Theorem
c0fdc..
:
∀ x0 :
ι →
(
ι →
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
ι →
(
ι → ο
)
→ ο
.
(
∀ x3 .
prim1
x3
x1
⟶
cdf76..
x0
x3
(
x2
x3
)
)
⟶
cdf76..
x0
x1
(
x0
x1
x2
)
(proof)
Theorem
7f73e..
:
∀ x0 :
ι →
(
ι →
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
cdf76..
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 :
ι →
(
ι → ο
)
→ ο
.
and
(
∀ x5 .
prim1
x5
x1
⟶
cdf76..
x0
x5
(
x4
x5
)
)
(
x2
=
x0
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Theorem
ddf85..
:
∀ x0 :
ι →
(
ι →
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
(
ι → ο
)
→ ο
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
cdf76..
x0
x1
x2
⟶
cdf76..
x0
x1
x3
⟶
x2
=
x3
(proof)
Theorem
4604c..
:
∀ x0 :
ι →
(
ι →
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
(
ι → ο
)
→ ο
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
cdf76..
x0
x1
(
In_rec_Vo2
x0
x1
)
(proof)
Theorem
a7ca6..
:
∀ x0 :
ι →
(
ι →
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
(
ι → ο
)
→ ο
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
cdf76..
x0
x1
(
x0
x1
(
In_rec_Vo2
x0
)
)
(proof)
Theorem
In_rec_Vo2_eq
:
∀ x0 :
ι →
(
ι →
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
(
ι → ο
)
→ ο
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_Vo2
x0
x1
=
x0
x1
(
In_rec_Vo2
x0
)
(proof)