Search for blocks/addresses/...

Proofgold Asset

asset id
df4965337201b938fc93c8c65d5574b99eec544a7e8d559aa85797c8958f2b43
asset hash
0ee248cf64cd9ecea80acda58c53f21d4623532142a969b54b6c3964b8205a6d
bday / block
316
tx
bec4a..
preasset
doc published by Pr8qe..
Known not_defnot_def : not = λ x1 : ο . x1False
Known notEnotE : ∀ x0 : ο . not x0x0False
Theorem 8106d..notI : ∀ x0 : ο . (x0False)not x0 (proof)
Known and_defand_def : and = λ x1 x2 : ο . ∀ x3 : ο . (x1x2x3)x3
Known andEandE : ∀ x0 x1 : ο . and x0 x1∀ x2 : ο . (x0x1x2)x2
Theorem 7c02f..andI : ∀ x0 x1 : ο . x0x1and x0 x1 (proof)
Known f13f4..or_def : or = λ x1 x2 : ο . ∀ x3 : ο . (x1x3)(x2x3)x3
Theorem 37124..orE : ∀ x0 x1 : ο . or x0 x1∀ x2 : ο . (x0x2)(x1x2)x2 (proof)
Theorem dcbd9..orIL : ∀ x0 x1 : ο . x0or x0 x1 (proof)
Theorem eca40..orIR : ∀ x0 x1 : ο . x1or x0 x1 (proof)
Known 5f92b..dneg : ∀ x0 : ο . not (not x0)x0
Theorem 9ac15..xm : ∀ x0 : ο . or x0 (not x0) (proof)
Theorem 47706..xmcases : ∀ x0 x1 : ο . (x0x1)(not x0x1)x1 (proof)
Known 13bcd..iff_def : iff = λ x1 x2 : ο . and (x1x2) (x2x1)
Theorem d182e..iffE : ∀ x0 x1 : ο . iff x0 x1∀ x2 : ο . (x0x1x2)(not x0not x1x2)x2 (proof)
Theorem 32c82..iffI : ∀ x0 x1 : ο . (x0x1)(x1x0)iff x0 x1 (proof)