Search for blocks/addresses/...

Proofgold Asset

asset id
dffee69372c9f1beee120921c54e49980d378d8b6b7bf80678c6cc0d6ea56052
asset hash
af4f433948c4c6e2e0650754f8b4749370fd0353f199408bd820044eec9ca3fb
bday / block
27278
tx
fb021..
preasset
doc published by Pr5Zc..
Known 1019a.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x8 (x1 x4 (x1 x7 (x1 x5 (x1 x3 x9))))))
Theorem 49291.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x7 (x1 x5 (x1 x3 x8)))))) (proof)
Theorem 51603.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x7 (x1 x5 (x1 x3 x8)))))) (proof)
Known c0c54.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x8))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x2 x8)))))
Known 28a45.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x2 (x1 x8 (x1 x3 (x1 x6 (x1 x7 (x1 x4 x9))))))
Theorem cefa5.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x7 (x1 x8 (x1 x5 x3)))))) (proof)
Theorem fa36f.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x7 (x1 x8 (x1 x5 x3)))))) (proof)
Known 93eac.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 . x0 x2x0 x3x0 x4x0 x5x0 x6x1 x2 (x1 x3 (x1 x4 (x1 x5 x6))) = x1 x3 (x1 x4 (x1 x5 (x1 x2 x6)))
Known a4f9d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x2 (x1 x8 (x1 x4 (x1 x6 (x1 x7 (x1 x3 x9))))))
Theorem b11f0.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x7 (x1 x8 (x1 x3 x5)))))) (proof)
Theorem 329cd.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x7 (x1 x8 (x1 x3 x5)))))) (proof)
Known 432fc.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x8 (x1 x4 (x1 x5 (x1 x3 (x1 x7 x9))))))
Theorem 8960c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x5 (x1 x3 (x1 x8 x7)))))) (proof)
Theorem 674a4.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x5 (x1 x3 (x1 x8 x7)))))) (proof)
Theorem 77314.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x5 (x1 x3 (x1 x7 x8)))))) (proof)
Theorem 32b6b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x5 (x1 x3 (x1 x7 x8)))))) (proof)
Known 9eafc.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x2 (x1 x8 (x1 x3 (x1 x4 (x1 x6 (x1 x7 x9))))))
Theorem ed3ab.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x5 (x1 x7 (x1 x8 x3)))))) (proof)
Theorem a0f35.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x5 (x1 x7 (x1 x8 x3)))))) (proof)
Known 1c4eb.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x8 (x1 x4 (x1 x5 (x1 x7 (x1 x3 x9))))))
Theorem 9f677.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x5 (x1 x7 (x1 x3 x8)))))) (proof)
Theorem 58cbe.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x5 (x1 x7 (x1 x3 x8)))))) (proof)
Known 9e5b5.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x2 (x1 x8 (x1 x3 (x1 x4 (x1 x7 (x1 x6 x9))))))
Theorem 26892.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x5 (x1 x8 (x1 x7 x3)))))) (proof)
Theorem 69c5c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x5 (x1 x8 (x1 x7 x3)))))) (proof)
Theorem 2b6bd.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x5 (x1 x8 (x1 x3 x7)))))) (proof)
Theorem f959e.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x5 (x1 x8 (x1 x3 x7)))))) (proof)
Known c76f9.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x8 (x1 x4 (x1 x3 (x1 x5 (x1 x7 x9))))))
Theorem c2915.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x3 (x1 x5 (x1 x8 x7)))))) (proof)
Theorem 3a77f.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x3 (x1 x5 (x1 x8 x7)))))) (proof)
Theorem 122f7.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x3 (x1 x5 (x1 x7 x8)))))) (proof)
Theorem f9bd7.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x3 (x1 x5 (x1 x7 x8)))))) (proof)
Known bb67b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x2 (x1 x8 (x1 x4 (x1 x3 (x1 x6 (x1 x7 x9))))))
Theorem ba40f.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x3 (x1 x7 (x1 x8 x5)))))) (proof)
Theorem 04643.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x3 (x1 x7 (x1 x8 x5)))))) (proof)
Known 72d8d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x8 (x1 x4 (x1 x3 (x1 x7 (x1 x5 x9))))))
Theorem ba331.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x3 (x1 x7 (x1 x5 x8)))))) (proof)
Theorem 3ea24.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x3 (x1 x7 (x1 x5 x8)))))) (proof)
Known f78e5.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x2 (x1 x8 (x1 x4 (x1 x3 (x1 x7 (x1 x6 x9))))))
Theorem 89e5e.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x3 (x1 x8 (x1 x7 x5)))))) (proof)
Theorem b996c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x3 (x1 x8 (x1 x7 x5)))))) (proof)
Theorem c361d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x3 (x1 x8 (x1 x5 x7)))))) (proof)
Theorem a2bb3.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x4 (x1 x3 (x1 x8 (x1 x5 x7)))))) (proof)
Known 75b00.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x7)))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x2 x7))))
Known 7c026.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x2 (x1 x8 (x1 x4 (x1 x7 (x1 x3 (x1 x6 x9))))))
Theorem f476f.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x8 (x1 x3 (x1 x7 x4)))))) (proof)
Theorem 78a20.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x8 (x1 x3 (x1 x7 x4)))))) (proof)
Known c25b4.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x8 (x1 x5 (x1 x7 (x1 x3 (x1 x4 x9))))))
Theorem 6aa28.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x8 (x1 x3 (x1 x4 x7)))))) (proof)
Theorem bec51.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x8 (x1 x3 (x1 x4 x7)))))) (proof)
Theorem e1be5.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x8 (x1 x4 (x1 x7 x3)))))) (proof)
Theorem 7d248.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x8 (x1 x4 (x1 x7 x3)))))) (proof)
Known f663e.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x8 (x1 x5 (x1 x7 (x1 x4 (x1 x3 x9))))))
Theorem 029f9.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x8 (x1 x4 (x1 x3 x7)))))) (proof)
Theorem 41d28.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x8 (x1 x4 (x1 x3 x7)))))) (proof)
Known a8331.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x2 (x1 x8 (x1 x4 (x1 x7 (x1 x6 (x1 x3 x9))))))
Theorem 938f7.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x8 (x1 x7 (x1 x4 x3)))))) (proof)
Theorem d3116.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x8 (x1 x7 (x1 x4 x3)))))) (proof)
Theorem 18ae3.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x8 (x1 x7 (x1 x3 x4)))))) (proof)
Theorem 18cf3.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x8 (x1 x7 (x1 x3 x4)))))) (proof)
Known e6242.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x2 (x1 x8 (x1 x4 (x1 x6 (x1 x3 (x1 x7 x9))))))
Theorem f1982.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x7 (x1 x3 (x1 x8 x4)))))) (proof)
Theorem 9dd67.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x7 (x1 x3 (x1 x8 x4)))))) (proof)
Theorem 8cbdb.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x7 (x1 x3 (x1 x4 x8)))))) (proof)
Theorem 42105.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x7 (x1 x3 (x1 x4 x8)))))) (proof)
Theorem 4bb1f.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x7 (x1 x4 (x1 x8 x3)))))) (proof)
Theorem 558ae.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x7 (x1 x4 (x1 x8 x3)))))) (proof)
Theorem 03a17.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x7 (x1 x4 (x1 x3 x8)))))) (proof)
Theorem 3c734.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x7 (x1 x4 (x1 x3 x8)))))) (proof)
Theorem 2600d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x7 (x1 x8 (x1 x4 x3)))))) (proof)
Theorem e9a3a.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x7 (x1 x8 (x1 x4 x3)))))) (proof)
Theorem c8bb0.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x7 (x1 x8 (x1 x3 x4)))))) (proof)
Theorem b70f2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x7 (x1 x8 (x1 x3 x4)))))) (proof)
Known 2e4a8.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x8 (x1 x5 (x1 x4 (x1 x3 (x1 x7 x9))))))
Theorem 97ca0.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x4 (x1 x3 (x1 x8 x7)))))) (proof)
Theorem 3bc5a.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x4 (x1 x3 (x1 x8 x7)))))) (proof)
Theorem dba30.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x4 (x1 x3 (x1 x7 x8)))))) (proof)
Theorem 194b3.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x4 (x1 x3 (x1 x7 x8)))))) (proof)
Theorem 47793.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x4 (x1 x7 (x1 x8 x3)))))) (proof)
Theorem 90307.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x4 (x1 x7 (x1 x8 x3)))))) (proof)
Known 87925.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x8 (x1 x5 (x1 x4 (x1 x7 (x1 x3 x9))))))
Theorem 50a77.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x4 (x1 x7 (x1 x3 x8)))))) (proof)
Theorem 11ed4.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x4 (x1 x7 (x1 x3 x8)))))) (proof)
Theorem 0ee9e.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x4 (x1 x8 (x1 x7 x3)))))) (proof)
Theorem e022b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x4 (x1 x8 (x1 x7 x3)))))) (proof)
Theorem 9fda0.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x4 (x1 x8 (x1 x3 x7)))))) (proof)
Theorem 1b9d7.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x4 (x1 x8 (x1 x3 x7)))))) (proof)
Known 695f1.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x8 (x1 x5 (x1 x3 (x1 x4 (x1 x7 x9))))))
Theorem 3516c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x3 (x1 x4 (x1 x8 x7)))))) (proof)
Theorem 8aeb0.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x3 (x1 x4 (x1 x8 x7)))))) (proof)
Theorem 0f917.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x3 (x1 x4 (x1 x7 x8)))))) (proof)
Theorem 57b00.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x3 (x1 x4 (x1 x7 x8)))))) (proof)
Theorem 6faaf.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x3 (x1 x7 (x1 x8 x4)))))) (proof)
Theorem 922a2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x3 (x1 x7 (x1 x8 x4)))))) (proof)
Known 5596f.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x8 (x1 x5 (x1 x3 (x1 x7 (x1 x4 x9))))))
Theorem 6f87a.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x3 (x1 x7 (x1 x4 x8)))))) (proof)
Theorem ce25d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x3 (x1 x7 (x1 x4 x8)))))) (proof)
Theorem acd28.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x3 (x1 x8 (x1 x7 x4)))))) (proof)
Theorem 60658.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x3 (x1 x8 (x1 x7 x4)))))) (proof)
Theorem 7ec0a.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x3 (x1 x8 (x1 x4 x7)))))) (proof)
Theorem 09c99.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x5 (x1 x3 (x1 x8 (x1 x4 x7)))))) (proof)
Known 50d5c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x2 (x1 x8 (x1 x6 (x1 x7 (x1 x3 (x1 x4 x9))))))
Theorem 5c483.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x8 (x1 x3 (x1 x5 x4)))))) (proof)
Theorem d3f9b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x8 (x1 x3 (x1 x5 x4)))))) (proof)
Theorem 79952.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x8 (x1 x3 (x1 x4 x5)))))) (proof)
Theorem a7c8c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x8 (x1 x3 (x1 x4 x5)))))) (proof)
Theorem ffcb8.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x8 (x1 x4 (x1 x5 x3)))))) (proof)
Theorem 649ab.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x8 (x1 x4 (x1 x5 x3)))))) (proof)
Known e0684.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x2 (x1 x8 (x1 x6 (x1 x7 (x1 x4 (x1 x3 x9))))))
Theorem 238f1.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x8 (x1 x4 (x1 x3 x5)))))) (proof)
Theorem f1824.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x8 (x1 x4 (x1 x3 x5)))))) (proof)
Theorem 7b1c0.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x8 (x1 x5 (x1 x4 x3)))))) (proof)
Theorem a9c8a.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x8 (x1 x5 (x1 x4 x3)))))) (proof)
Theorem 934a8.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x8 (x1 x5 (x1 x3 x4)))))) (proof)
Theorem e9dad.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x8 (x1 x5 (x1 x3 x4)))))) (proof)
Known 2ca10.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x2 (x1 x8 (x1 x6 (x1 x4 (x1 x3 (x1 x7 x9))))))
Theorem 2ec5e.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x5 (x1 x3 (x1 x8 x4)))))) (proof)
Theorem b8dea.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x5 (x1 x3 (x1 x8 x4)))))) (proof)
Known 61199.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x8 (x1 x7 (x1 x5 (x1 x3 (x1 x4 x9))))))
Theorem b3f14.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x5 (x1 x3 (x1 x4 x8)))))) (proof)
Theorem 80753.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x5 (x1 x3 (x1 x4 x8)))))) (proof)
Theorem f31a9.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x5 (x1 x4 (x1 x8 x3)))))) (proof)
Theorem c53f7.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x5 (x1 x4 (x1 x8 x3)))))) (proof)
Known 822aa.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x8 (x1 x7 (x1 x5 (x1 x4 (x1 x3 x9))))))
Theorem 4935b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x5 (x1 x4 (x1 x3 x8)))))) (proof)
Theorem 5230d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x5 (x1 x4 (x1 x3 x8)))))) (proof)
Known 17e0d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x2 (x1 x8 (x1 x6 (x1 x4 (x1 x7 (x1 x3 x9))))))
Theorem 6ea85.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x5 (x1 x8 (x1 x4 x3)))))) (proof)
Theorem e5a9f.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x5 (x1 x8 (x1 x4 x3)))))) (proof)
Theorem a14cc.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x5 (x1 x8 (x1 x3 x4)))))) (proof)
Theorem 46fef.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x5 (x1 x8 (x1 x3 x4)))))) (proof)
Theorem a93c3.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x4 (x1 x3 (x1 x8 x5)))))) (proof)
Theorem 2f1a0.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x4 (x1 x3 (x1 x8 x5)))))) (proof)
Known ddfeb.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x8 (x1 x7 (x1 x4 (x1 x3 (x1 x5 x9))))))
Theorem 665f8.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x4 (x1 x3 (x1 x5 x8)))))) (proof)
Theorem 2b3b4.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x9 (x1 x7 (x1 x4 (x1 x3 (x1 x5 x8)))))) (proof)