Search for blocks/addresses/...

Proofgold Asset

asset id
52944111f7bce42004a17de96ad93f7ff446961a6f38c9e99813db505615a097
asset hash
e064427663ab5cc888d1bddb9f5b420814e7dca5b6fd6f4acc4fcb6041d6d385
bday / block
1446
tx
cb38c..
preasset
doc published by PrGxv..
Known notEnotE : ∀ x0 : ο . not x0x0False
Known TrueITrueI : True
Theorem bbee1..tab_neg_True : not TrueFalse (proof)
Known 7c02f..andI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem f6404..and3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2 (proof)
Known and_defand_def : and = λ x1 x2 : ο . ∀ x3 : ο . (x1x2x3)x3
Theorem cd094..and3E : ∀ x0 x1 x2 : ο . and (and x0 x1) x2∀ x3 : ο . (x0x1x2x3)x3 (proof)
Known dcbd9..orIL : ∀ x0 x1 : ο . x0or x0 x1
Theorem cb243..or3I1 : ∀ x0 x1 x2 : ο . x0or (or x0 x1) x2 (proof)
Known eca40..orIR : ∀ x0 x1 : ο . x1or x0 x1
Theorem 8aff3..or3I2 : ∀ x0 x1 x2 : ο . x1or (or x0 x1) x2 (proof)
Theorem a4277..or3I3 : ∀ x0 x1 x2 : ο . x2or (or x0 x1) x2 (proof)
Known f13f4..or_def : or = λ x1 x2 : ο . ∀ x3 : ο . (x1x3)(x2x3)x3
Theorem 8cb38..or3E : ∀ x0 x1 x2 : ο . or (or x0 x1) x2∀ x3 : ο . (x0x3)(x1x3)(x2x3)x3 (proof)
Theorem 22d81..and4I : ∀ x0 x1 x2 x3 : ο . x0x1x2x3and (and (and x0 x1) x2) x3 (proof)
Theorem a660e..and4E : ∀ x0 x1 x2 x3 : ο . and (and (and x0 x1) x2) x3∀ x4 : ο . (x0x1x2x3x4)x4 (proof)
Theorem 266ab..or4I1 : ∀ x0 x1 x2 x3 : ο . x0or (or (or x0 x1) x2) x3 (proof)
Theorem 0675f..or4I2 : ∀ x0 x1 x2 x3 : ο . x1or (or (or x0 x1) x2) x3 (proof)
Theorem e3915..or4I3 : ∀ x0 x1 x2 x3 : ο . x2or (or (or x0 x1) x2) x3 (proof)
Theorem 4354d..or4I4 : ∀ x0 x1 x2 x3 : ο . x3or (or (or x0 x1) x2) x3 (proof)
Theorem c3778..or4E : ∀ x0 x1 x2 x3 : ο . or (or (or x0 x1) x2) x3∀ x4 : ο . (x0x4)(x1x4)(x2x4)(x3x4)x4 (proof)
Theorem 1bd08..and5I : ∀ x0 x1 x2 x3 x4 : ο . x0x1x2x3x4and (and (and (and x0 x1) x2) x3) x4 (proof)
Theorem d5e32..and5E : ∀ x0 x1 x2 x3 x4 : ο . and (and (and (and x0 x1) x2) x3) x4∀ x5 : ο . (x0x1x2x3x4x5)x5 (proof)
Theorem 17f0e..or5I1 : ∀ x0 x1 x2 x3 x4 : ο . x0or (or (or (or x0 x1) x2) x3) x4 (proof)
Theorem a13f5..or5I2 : ∀ x0 x1 x2 x3 x4 : ο . x1or (or (or (or x0 x1) x2) x3) x4 (proof)
Theorem 864e8..or5I3 : ∀ x0 x1 x2 x3 x4 : ο . x2or (or (or (or x0 x1) x2) x3) x4 (proof)
Theorem 389cb..or5I4 : ∀ x0 x1 x2 x3 x4 : ο . x3or (or (or (or x0 x1) x2) x3) x4 (proof)
Theorem 75472..or5I5 : ∀ x0 x1 x2 x3 x4 : ο . x4or (or (or (or x0 x1) x2) x3) x4 (proof)
Theorem 46520..or5E : ∀ x0 x1 x2 x3 x4 : ο . or (or (or (or x0 x1) x2) x3) x4∀ x5 : ο . (x0x5)(x1x5)(x2x5)(x3x5)(x4x5)x5 (proof)
Theorem fc6fc..and6I : ∀ x0 x1 x2 x3 x4 x5 : ο . x0x1x2x3x4x5and (and (and (and (and x0 x1) x2) x3) x4) x5 (proof)
Theorem 6130e..and6E : ∀ x0 x1 x2 x3 x4 x5 : ο . and (and (and (and (and x0 x1) x2) x3) x4) x5∀ x6 : ο . (x0x1x2x3x4x5x6)x6 (proof)
Theorem 92342..and7I : ∀ x0 x1 x2 x3 x4 x5 x6 : ο . x0x1x2x3x4x5x6and (and (and (and (and (and x0 x1) x2) x3) x4) x5) x6 (proof)
Theorem dd249..and7E : ∀ x0 x1 x2 x3 x4 x5 x6 : ο . and (and (and (and (and (and x0 x1) x2) x3) x4) x5) x6∀ x7 : ο . (x0x1x2x3x4x5x6x7)x7 (proof)
Known b4782..contra : ∀ x0 : ο . (not x0False)x0
Theorem ae2b8..tab_neg_ex_i : ∀ x0 : ι → ο . ∀ x1 . not (∀ x2 : ο . (∀ x3 . x0 x3x2)x2)(not (x0 x1)False)False (proof)
Known 4cb75..Eps_i_R : ∀ x0 : ι → ο . ∀ x1 . x0 x1x0 (Eps_i x0)
Theorem Eps_i_exEps_i_R2 : ∀ x0 : ι → ο . (∀ x1 : ο . (∀ x2 . x0 x2x1)x1)x0 (Eps_i x0) (proof)
Known 47706..xmcases : ∀ x0 x1 : ο . (x0x1)(not x0x1)x1
Known 6abef..nIn_I : ∀ x0 x1 . not (In x0 x1)nIn x0 x1
Theorem 3ab01..xmcases_In : ∀ x0 x1 . ∀ x2 : ο . (In x0 x1x2)(nIn x0 x1x2)x2 (proof)
Known 4f094..Sep_def : Sep = λ x1 . λ x2 : ι → ο . If_i (∀ x3 : ο . (∀ x4 . and (In x4 x1) (x2 x4)x3)x3) (Repl x1 (λ x3 . If_i (x2 x3) x3 (Eps_i (λ x4 . and (In x4 x1) (x2 x4))))) 0
Known f1bf4..ReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . In x2 x0In (x1 x2) (Repl x0 x1)
Known 0d2f9..If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0If_i x0 x1 x2 = x1
Theorem dab1f..SepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . In x2 x0x1 x2In x2 (Sep x0 x1) (proof)
Known 0f096..ReplE2 : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . In x2 (Repl x0 x1)∀ x3 : ο . (∀ x4 . In x4 x0x2 = x1 x4x3)x3
Known 81513..If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0If_i x0 x1 x2 = x2
Known FalseEFalseE : False∀ x0 : ο . x0
Known 2901c..EmptyE : ∀ x0 . In x0 0False
Theorem c967f..SepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . In x2 (Sep x0 x1)and (In x2 x0) (x1 x2) (proof)
Known andEandE : ∀ x0 x1 : ο . and x0 x1∀ x2 : ο . (x0x1x2)x2
Theorem aa3f4..SepE_impred : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . In x2 (Sep x0 x1)∀ x3 : ο . (In x2 x0x1 x2x3)x3 (proof)
Theorem c4260..SepE1 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . In x2 (Sep x0 x1)In x2 x0 (proof)
Theorem 076ba..SepE2 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . In x2 (Sep x0 x1)x1 x2 (proof)
Known b0dce..SubqI : ∀ x0 x1 . (∀ x2 . In x2 x0In x2 x1)Subq x0 x1
Theorem d05a3..Sep_Subq : ∀ x0 . ∀ x1 : ι → ο . Subq (Sep x0 x1) x0 (proof)
Known 2d44a..PowerI : ∀ x0 x1 . Subq x1 x0In x1 (Power x0)
Theorem fa8b5..Sep_In_Power : ∀ x0 . ∀ x1 : ι → ο . In (Sep x0 x1) (Power x0) (proof)
Theorem 34fe8..tab_pos_Sep : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . In x2 (Sep x0 x1)(In x2 x0x1 x2False)False (proof)
Known 24526..nIn_E2 : ∀ x0 x1 . nIn x0 x1In x0 x1False
Known 085e3..contra_In : ∀ x0 x1 . (nIn x0 x1False)In x0 x1
Theorem 49d23..tab_neg_Sep : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . nIn x2 (Sep x0 x1)(nIn x2 x0False)(not (x1 x2)False)False (proof)
Known f88cc..ReplSep_def : ReplSep = λ x1 . λ x2 : ι → ο . Repl (Sep x1 x2)
Theorem 9fdc4..ReplSepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 : ι → ι . ∀ x3 . In x3 x0x1 x3In (x2 x3) (ReplSep x0 x1 x2) (proof)
Theorem 71143..ReplSepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 : ι → ι . ∀ x3 . In x3 (ReplSep x0 x1 x2)∀ x4 : ο . (∀ x5 . and (and (In x5 x0) (x1 x5)) (x3 = x2 x5)x4)x4 (proof)
Known 61640..exandE_i : ∀ x0 x1 : ι → ο . (∀ x2 : ο . (∀ x3 . and (x0 x3) (x1 x3)x2)x2)∀ x2 : ο . (∀ x3 . x0 x3x1 x3x2)x2
Theorem 65d0d..ReplSepE_impred : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 : ι → ι . ∀ x3 . In x3 (ReplSep x0 x1 x2)∀ x4 : ο . (∀ x5 . In x5 x0x1 x5x3 = x2 x5x4)x4 (proof)
Theorem aeb4e..tab_pos_ReplSep : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 : ι → ι . ∀ x3 . In x3 (ReplSep x0 x1 x2)(∀ x4 . In x4 x0x1 x4x3 = x2 x4False)False (proof)
Theorem c3612..tab_neg_ReplSep : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 : ι → ι . ∀ x3 x4 . nIn x3 (ReplSep x0 x1 x2)(nIn x4 x0False)(not (x1 x4)False)(not (x3 = x2 x4)False)False (proof)
Known 535f2..set_ext_2 : ∀ x0 x1 . (∀ x2 . In x2 x0In x2 x1)(∀ x2 . In x2 x1In x2 x0)x0 = x1
Known f9974..binunionE_cases : ∀ x0 x1 x2 . In x2 (binunion x0 x1)∀ x3 : ο . (In x2 x0x3)(In x2 x1x3)x3
Known 0ce8c..binunionI1 : ∀ x0 x1 x2 . In x2 x0In x2 (binunion x0 x1)
Known eb8b4..binunionI2 : ∀ x0 x1 x2 . In x2 x1In x2 (binunion x0 x1)
Theorem 50617..binunion_asso : ∀ x0 x1 x2 . binunion x0 (binunion x1 x2) = binunion (binunion x0 x1) x2 (proof)
Theorem a8a0c.. : ∀ x0 x1 . Subq (binunion x0 x1) (binunion x1 x0) (proof)
Known b3824..set_ext : ∀ x0 x1 . Subq x0 x1Subq x1 x0x0 = x1
Theorem 78b78..binunion_com : ∀ x0 x1 . binunion x0 x1 = binunion x1 x0 (proof)
Theorem dae53..binunion_idl : ∀ x0 . binunion 0 x0 = x0 (proof)
Theorem 70cfd..binunion_idr : ∀ x0 . binunion x0 0 = x0 (proof)
Theorem 58eb6..binunion_idem : ∀ x0 . binunion x0 x0 = x0 (proof)
Theorem 7570e..binunion_Subq_1 : ∀ x0 x1 . Subq x0 (binunion x0 x1) (proof)
Theorem de882..binunion_Subq_2 : ∀ x0 x1 . Subq x1 (binunion x0 x1) (proof)
Known c1173..Subq_def : Subq = λ x1 x2 . ∀ x3 . In x3 x1In x3 x2
Theorem 75230..binunion_Subq_min : ∀ x0 x1 x2 . Subq x0 x2Subq x1 x2Subq (binunion x0 x1) x2 (proof)
Known prop_ext_2prop_ext_2 : ∀ x0 x1 : ο . (x0x1)(x1x0)x0 = x1
Known 6696a..Subq_ref : ∀ x0 . Subq x0 x0
Theorem 69c3f..Subq_binunion_eq : ∀ x0 x1 . Subq x0 x1 = (binunion x0 x1 = x1) (proof)
Known 9d2e6..nIn_I2 : ∀ x0 x1 . (In x0 x1False)nIn x0 x1
Theorem d22e3..binunion_nIn_I : ∀ x0 x1 x2 . nIn x2 x0nIn x2 x1nIn x2 (binunion x0 x1) (proof)
Theorem 68d17..binunion_nIn_E : ∀ x0 x1 x2 . nIn x2 (binunion x0 x1)and (nIn x2 x0) (nIn x2 x1) (proof)
Theorem 17efc..binunion_nIn_E_impred : ∀ x0 x1 x2 . nIn x2 (binunion x0 x1)∀ x3 : ο . (nIn x2 x0nIn x2 x1x3)x3 (proof)
Known 52527..binintersect_def : binintersect = λ x1 x2 . Sep x1 (λ x3 . In x3 x2)
Theorem dd25c..binintersectI : ∀ x0 x1 x2 . In x2 x0In x2 x1In x2 (binintersect x0 x1) (proof)
Theorem 277ae..binintersectE : ∀ x0 x1 x2 . In x2 (binintersect x0 x1)and (In x2 x0) (In x2 x1) (proof)
Theorem 9c451..binintersectE_impred : ∀ x0 x1 x2 . In x2 (binintersect x0 x1)∀ x3 : ο . (In x2 x0In x2 x1x3)x3 (proof)
Theorem c5fa0..binintersectE1 : ∀ x0 x1 x2 . In x2 (binintersect x0 x1)In x2 x0 (proof)
Theorem 5317c..binintersectE2 : ∀ x0 x1 x2 . In x2 (binintersect x0 x1)In x2 x1 (proof)
Theorem 05c0a..binintersect_Subq_1 : ∀ x0 x1 . Subq (binintersect x0 x1) x0 (proof)
Theorem df480..binintersect_Subq_2 : ∀ x0 x1 . Subq (binintersect x0 x1) x1 (proof)
Known 367e6..SubqE : ∀ x0 x1 . Subq x0 x1∀ x2 . In x2 x0In x2 x1
Theorem 485cd..binintersect_Subq_eq_1 : ∀ x0 x1 . Subq x0 x1binintersect x0 x1 = x0 (proof)
Theorem b962e..binintersect_Subq_max : ∀ x0 x1 x2 . Subq x2 x0Subq x2 x1Subq x2 (binintersect x0 x1) (proof)
Known 2ad64..Subq_tra : ∀ x0 x1 x2 . Subq x0 x1Subq x1 x2Subq x0 x2
Theorem 0964f..binintersect_asso : ∀ x0 x1 x2 . binintersect x0 (binintersect x1 x2) = binintersect (binintersect x0 x1) x2 (proof)
Theorem f946b.. : ∀ x0 x1 . Subq (binintersect x0 x1) (binintersect x1 x0) (proof)
Theorem 6b560..binintersect_com : ∀ x0 x1 . binintersect x0 x1 = binintersect x1 x0 (proof)
Known d6778..Empty_Subq_eq : ∀ x0 . Subq x0 0x0 = 0
Theorem ef0ec..binintersect_annil : ∀ x0 . binintersect 0 x0 = 0 (proof)
Theorem a46a3..binintersect_annir : ∀ x0 . binintersect x0 0 = 0 (proof)
Theorem 8ca5a..binintersect_idem : ∀ x0 . binintersect x0 x0 = x0 (proof)
Theorem f1349..binintersect_binunion_distr : ∀ x0 x1 x2 . binintersect x0 (binunion x1 x2) = binunion (binintersect x0 x1) (binintersect x0 x2) (proof)
Theorem 12c26..binunion_binintersect_distr : ∀ x0 x1 x2 . binunion x0 (binintersect x1 x2) = binintersect (binunion x0 x1) (binunion x0 x2) (proof)
Theorem 5e05c..Subq_binintersection_eq : ∀ x0 x1 . Subq x0 x1 = (binintersect x0 x1 = x0) (proof)
Theorem d11f4..binintersect_nIn_I1 : ∀ x0 x1 x2 . nIn x2 x0nIn x2 (binintersect x0 x1) (proof)
Theorem 4c3a8..binintersect_nIn_I2 : ∀ x0 x1 x2 . nIn x2 x1nIn x2 (binintersect x0 x1) (proof)
Theorem d7630..binintersect_nIn_E : ∀ x0 x1 x2 . nIn x2 (binintersect x0 x1)or (nIn x2 x0) (nIn x2 x1) (proof)
Known 37124..orE : ∀ x0 x1 : ο . or x0 x1∀ x2 : ο . (x0x2)(x1x2)x2
Theorem 1ac88..binintersect_nIn_E_impred : ∀ x0 x1 x2 . nIn x2 (binintersect x0 x1)∀ x3 : ο . (nIn x2 x0x3)(nIn x2 x1x3)x3 (proof)
Theorem 5d6fd..tab_pos_binintersect : ∀ x0 x1 x2 . In x2 (binintersect x0 x1)(In x2 x0In x2 x1False)False (proof)
Theorem 30a90..tab_neg_binintersect : ∀ x0 x1 x2 . nIn x2 (binintersect x0 x1)(nIn x2 x0False)(nIn x2 x1False)False (proof)
Known f5588..setminus_def : setminus = λ x1 x2 . Sep x1 (λ x3 . nIn x3 x2)
Theorem 626dc..setminusI : ∀ x0 x1 x2 . In x2 x0nIn x2 x1In x2 (setminus x0 x1) (proof)
Theorem 349f7..setminusE : ∀ x0 x1 x2 . In x2 (setminus x0 x1)and (In x2 x0) (nIn x2 x1) (proof)
Theorem 243aa..setminusE_impred : ∀ x0 x1 x2 . In x2 (setminus x0 x1)∀ x3 : ο . (In x2 x0nIn x2 x1x3)x3 (proof)
Theorem 54d83..setminusE1 : ∀ x0 x1 x2 . In x2 (setminus x0 x1)In x2 x0 (proof)
Theorem 28403..setminusE2 : ∀ x0 x1 x2 . In x2 (setminus x0 x1)nIn x2 x1 (proof)
Theorem 74206..setminus_Subq : ∀ x0 x1 . Subq (setminus x0 x1) x0 (proof)
Known a7ffa..Subq_contra : ∀ x0 x1 x2 . Subq x0 x1nIn x2 x1nIn x2 x0
Theorem 8b73d..setminus_Subq_contra : ∀ x0 x1 x2 . Subq x2 x1Subq (setminus x0 x1) (setminus x0 x2) (proof)
Theorem 6502f..setminus_nIn_I1 : ∀ x0 x1 x2 . nIn x2 x0nIn x2 (setminus x0 x1) (proof)
Theorem 6d89c..setminus_nIn_I2 : ∀ x0 x1 x2 . In x2 x1nIn x2 (setminus x0 x1) (proof)
Theorem 2c30c..setminus_nIn_E : ∀ x0 x1 x2 . nIn x2 (setminus x0 x1)or (nIn x2 x0) (In x2 x1) (proof)
Theorem af072..setminus_nIn_E_impred : ∀ x0 x1 x2 . nIn x2 (setminus x0 x1)∀ x3 : ο . (nIn x2 x0x3)(In x2 x1x3)x3 (proof)
Known d0de4..Empty_eq : ∀ x0 . (∀ x1 . nIn x1 x0)x0 = 0
Theorem 24940..setminus_selfannih : ∀ x0 . setminus x0 x0 = 0 (proof)
Theorem a43ed..setminus_binintersect : ∀ x0 x1 x2 . setminus x0 (binintersect x1 x2) = binunion (setminus x0 x1) (setminus x0 x2) (proof)
Theorem f0846..setminus_binunion : ∀ x0 x1 x2 . setminus x0 (binunion x1 x2) = setminus (setminus x0 x1) x2 (proof)
Theorem e58ae..binintersect_setminus : ∀ x0 x1 x2 . setminus (binintersect x0 x1) x2 = binintersect x0 (setminus x1 x2) (proof)
Theorem 1a1e7..binunion_setminus : ∀ x0 x1 x2 . setminus (binunion x0 x1) x2 = binunion (setminus x0 x2) (setminus x1 x2) (proof)
Theorem 0253c..setminus_setminus : ∀ x0 x1 x2 . setminus x0 (setminus x1 x2) = binunion (setminus x0 x1) (binintersect x0 x2) (proof)
Theorem 0227e..setminus_annil : ∀ x0 . setminus 0 x0 = 0 (proof)
Known 3cfc3..nIn_Empty : ∀ x0 . nIn x0 0
Theorem 5ff7d..setminus_idr : ∀ x0 . setminus x0 0 = x0 (proof)
Theorem b4d92..tab_pos_setminus : ∀ x0 x1 x2 . In x2 (setminus x0 x1)(In x2 x0nIn x2 x1False)False (proof)
Theorem 34f38..tab_neg_setminus : ∀ x0 x1 x2 . nIn x2 (setminus x0 x1)(nIn x2 x0False)(In x2 x1False)False (proof)