Search for blocks/addresses/...
Proofgold Asset
asset id
52944111f7bce42004a17de96ad93f7ff446961a6f38c9e99813db505615a097
asset hash
e064427663ab5cc888d1bddb9f5b420814e7dca5b6fd6f4acc4fcb6041d6d385
bday / block
1446
tx
cb38c..
preasset
doc published by
PrGxv..
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Known
TrueI
TrueI
:
True
Theorem
bbee1..
tab_neg_True
:
not
True
⟶
False
(proof)
Known
7c02f..
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
f6404..
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
(proof)
Known
and_def
and_def
:
and
=
λ x1 x2 : ο .
∀ x3 : ο .
(
x1
⟶
x2
⟶
x3
)
⟶
x3
Theorem
cd094..
and3E
:
∀ x0 x1 x2 : ο .
and
(
and
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
)
⟶
x3
(proof)
Known
dcbd9..
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Theorem
cb243..
or3I1
:
∀ x0 x1 x2 : ο .
x0
⟶
or
(
or
x0
x1
)
x2
(proof)
Known
eca40..
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
8aff3..
or3I2
:
∀ x0 x1 x2 : ο .
x1
⟶
or
(
or
x0
x1
)
x2
(proof)
Theorem
a4277..
or3I3
:
∀ x0 x1 x2 : ο .
x2
⟶
or
(
or
x0
x1
)
x2
(proof)
Known
f13f4..
or_def
:
or
=
λ x1 x2 : ο .
∀ x3 : ο .
(
x1
⟶
x3
)
⟶
(
x2
⟶
x3
)
⟶
x3
Theorem
8cb38..
or3E
:
∀ x0 x1 x2 : ο .
or
(
or
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x3
)
⟶
(
x1
⟶
x3
)
⟶
(
x2
⟶
x3
)
⟶
x3
(proof)
Theorem
22d81..
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
(proof)
Theorem
a660e..
and4E
:
∀ x0 x1 x2 x3 : ο .
and
(
and
(
and
x0
x1
)
x2
)
x3
⟶
∀ x4 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
)
⟶
x4
(proof)
Theorem
266ab..
or4I1
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
or
(
or
(
or
x0
x1
)
x2
)
x3
(proof)
Theorem
0675f..
or4I2
:
∀ x0 x1 x2 x3 : ο .
x1
⟶
or
(
or
(
or
x0
x1
)
x2
)
x3
(proof)
Theorem
e3915..
or4I3
:
∀ x0 x1 x2 x3 : ο .
x2
⟶
or
(
or
(
or
x0
x1
)
x2
)
x3
(proof)
Theorem
4354d..
or4I4
:
∀ x0 x1 x2 x3 : ο .
x3
⟶
or
(
or
(
or
x0
x1
)
x2
)
x3
(proof)
Theorem
c3778..
or4E
:
∀ x0 x1 x2 x3 : ο .
or
(
or
(
or
x0
x1
)
x2
)
x3
⟶
∀ x4 : ο .
(
x0
⟶
x4
)
⟶
(
x1
⟶
x4
)
⟶
(
x2
⟶
x4
)
⟶
(
x3
⟶
x4
)
⟶
x4
(proof)
Theorem
1bd08..
and5I
:
∀ x0 x1 x2 x3 x4 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
(proof)
Theorem
d5e32..
and5E
:
∀ x0 x1 x2 x3 x4 : ο .
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
⟶
∀ x5 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
)
⟶
x5
(proof)
Theorem
17f0e..
or5I1
:
∀ x0 x1 x2 x3 x4 : ο .
x0
⟶
or
(
or
(
or
(
or
x0
x1
)
x2
)
x3
)
x4
(proof)
Theorem
a13f5..
or5I2
:
∀ x0 x1 x2 x3 x4 : ο .
x1
⟶
or
(
or
(
or
(
or
x0
x1
)
x2
)
x3
)
x4
(proof)
Theorem
864e8..
or5I3
:
∀ x0 x1 x2 x3 x4 : ο .
x2
⟶
or
(
or
(
or
(
or
x0
x1
)
x2
)
x3
)
x4
(proof)
Theorem
389cb..
or5I4
:
∀ x0 x1 x2 x3 x4 : ο .
x3
⟶
or
(
or
(
or
(
or
x0
x1
)
x2
)
x3
)
x4
(proof)
Theorem
75472..
or5I5
:
∀ x0 x1 x2 x3 x4 : ο .
x4
⟶
or
(
or
(
or
(
or
x0
x1
)
x2
)
x3
)
x4
(proof)
Theorem
46520..
or5E
:
∀ x0 x1 x2 x3 x4 : ο .
or
(
or
(
or
(
or
x0
x1
)
x2
)
x3
)
x4
⟶
∀ x5 : ο .
(
x0
⟶
x5
)
⟶
(
x1
⟶
x5
)
⟶
(
x2
⟶
x5
)
⟶
(
x3
⟶
x5
)
⟶
(
x4
⟶
x5
)
⟶
x5
(proof)
Theorem
fc6fc..
and6I
:
∀ x0 x1 x2 x3 x4 x5 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
(proof)
Theorem
6130e..
and6E
:
∀ x0 x1 x2 x3 x4 x5 : ο .
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
⟶
∀ x6 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
)
⟶
x6
(proof)
Theorem
92342..
and7I
:
∀ x0 x1 x2 x3 x4 x5 x6 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
(proof)
Theorem
dd249..
and7E
:
∀ x0 x1 x2 x3 x4 x5 x6 : ο .
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
⟶
∀ x7 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
x7
)
⟶
x7
(proof)
Known
b4782..
contra
:
∀ x0 : ο .
(
not
x0
⟶
False
)
⟶
x0
Theorem
ae2b8..
tab_neg_ex_i
:
∀ x0 :
ι → ο
.
∀ x1 .
not
(
∀ x2 : ο .
(
∀ x3 .
x0
x3
⟶
x2
)
⟶
x2
)
⟶
(
not
(
x0
x1
)
⟶
False
)
⟶
False
(proof)
Known
4cb75..
Eps_i_R
:
∀ x0 :
ι → ο
.
∀ x1 .
x0
x1
⟶
x0
(
Eps_i
x0
)
Theorem
Eps_i_ex
Eps_i_R2
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
Eps_i
x0
)
(proof)
Known
47706..
xmcases
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
not
x0
⟶
x1
)
⟶
x1
Known
6abef..
nIn_I
:
∀ x0 x1 .
not
(
In
x0
x1
)
⟶
nIn
x0
x1
Theorem
3ab01..
xmcases_In
:
∀ x0 x1 .
∀ x2 : ο .
(
In
x0
x1
⟶
x2
)
⟶
(
nIn
x0
x1
⟶
x2
)
⟶
x2
(proof)
Known
4f094..
Sep_def
:
Sep
=
λ x1 .
λ x2 :
ι → ο
.
If_i
(
∀ x3 : ο .
(
∀ x4 .
and
(
In
x4
x1
)
(
x2
x4
)
⟶
x3
)
⟶
x3
)
(
Repl
x1
(
λ x3 .
If_i
(
x2
x3
)
x3
(
Eps_i
(
λ x4 .
and
(
In
x4
x1
)
(
x2
x4
)
)
)
)
)
0
Known
f1bf4..
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
x0
⟶
In
(
x1
x2
)
(
Repl
x0
x1
)
Known
0d2f9..
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Theorem
dab1f..
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
In
x2
x0
⟶
x1
x2
⟶
In
x2
(
Sep
x0
x1
)
(proof)
Known
0f096..
ReplE2
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
(
Repl
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
In
x4
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
81513..
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
2901c..
EmptyE
:
∀ x0 .
In
x0
0
⟶
False
Theorem
c967f..
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
In
x2
(
Sep
x0
x1
)
⟶
and
(
In
x2
x0
)
(
x1
x2
)
(proof)
Known
andE
andE
:
∀ x0 x1 : ο .
and
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Theorem
aa3f4..
SepE_impred
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
In
x2
(
Sep
x0
x1
)
⟶
∀ x3 : ο .
(
In
x2
x0
⟶
x1
x2
⟶
x3
)
⟶
x3
(proof)
Theorem
c4260..
SepE1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
In
x2
(
Sep
x0
x1
)
⟶
In
x2
x0
(proof)
Theorem
076ba..
SepE2
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
In
x2
(
Sep
x0
x1
)
⟶
x1
x2
(proof)
Known
b0dce..
SubqI
:
∀ x0 x1 .
(
∀ x2 .
In
x2
x0
⟶
In
x2
x1
)
⟶
Subq
x0
x1
Theorem
d05a3..
Sep_Subq
:
∀ x0 .
∀ x1 :
ι → ο
.
Subq
(
Sep
x0
x1
)
x0
(proof)
Known
2d44a..
PowerI
:
∀ x0 x1 .
Subq
x1
x0
⟶
In
x1
(
Power
x0
)
Theorem
fa8b5..
Sep_In_Power
:
∀ x0 .
∀ x1 :
ι → ο
.
In
(
Sep
x0
x1
)
(
Power
x0
)
(proof)
Theorem
34fe8..
tab_pos_Sep
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
In
x2
(
Sep
x0
x1
)
⟶
(
In
x2
x0
⟶
x1
x2
⟶
False
)
⟶
False
(proof)
Known
24526..
nIn_E2
:
∀ x0 x1 .
nIn
x0
x1
⟶
In
x0
x1
⟶
False
Known
085e3..
contra_In
:
∀ x0 x1 .
(
nIn
x0
x1
⟶
False
)
⟶
In
x0
x1
Theorem
49d23..
tab_neg_Sep
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
nIn
x2
(
Sep
x0
x1
)
⟶
(
nIn
x2
x0
⟶
False
)
⟶
(
not
(
x1
x2
)
⟶
False
)
⟶
False
(proof)
Known
f88cc..
ReplSep_def
:
ReplSep
=
λ x1 .
λ x2 :
ι → ο
.
Repl
(
Sep
x1
x2
)
Theorem
9fdc4..
ReplSepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
In
x3
x0
⟶
x1
x3
⟶
In
(
x2
x3
)
(
ReplSep
x0
x1
x2
)
(proof)
Theorem
71143..
ReplSepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
In
x3
(
ReplSep
x0
x1
x2
)
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
and
(
In
x5
x0
)
(
x1
x5
)
)
(
x3
=
x2
x5
)
⟶
x4
)
⟶
x4
(proof)
Known
61640..
exandE_i
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 : ο .
(
∀ x3 .
and
(
x0
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
∀ x2 : ο .
(
∀ x3 .
x0
x3
⟶
x1
x3
⟶
x2
)
⟶
x2
Theorem
65d0d..
ReplSepE_impred
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
In
x3
(
ReplSep
x0
x1
x2
)
⟶
∀ x4 : ο .
(
∀ x5 .
In
x5
x0
⟶
x1
x5
⟶
x3
=
x2
x5
⟶
x4
)
⟶
x4
(proof)
Theorem
aeb4e..
tab_pos_ReplSep
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
In
x3
(
ReplSep
x0
x1
x2
)
⟶
(
∀ x4 .
In
x4
x0
⟶
x1
x4
⟶
x3
=
x2
x4
⟶
False
)
⟶
False
(proof)
Theorem
c3612..
tab_neg_ReplSep
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 x4 .
nIn
x3
(
ReplSep
x0
x1
x2
)
⟶
(
nIn
x4
x0
⟶
False
)
⟶
(
not
(
x1
x4
)
⟶
False
)
⟶
(
not
(
x3
=
x2
x4
)
⟶
False
)
⟶
False
(proof)
Known
535f2..
set_ext_2
:
∀ x0 x1 .
(
∀ x2 .
In
x2
x0
⟶
In
x2
x1
)
⟶
(
∀ x2 .
In
x2
x1
⟶
In
x2
x0
)
⟶
x0
=
x1
Known
f9974..
binunionE_cases
:
∀ x0 x1 x2 .
In
x2
(
binunion
x0
x1
)
⟶
∀ x3 : ο .
(
In
x2
x0
⟶
x3
)
⟶
(
In
x2
x1
⟶
x3
)
⟶
x3
Known
0ce8c..
binunionI1
:
∀ x0 x1 x2 .
In
x2
x0
⟶
In
x2
(
binunion
x0
x1
)
Known
eb8b4..
binunionI2
:
∀ x0 x1 x2 .
In
x2
x1
⟶
In
x2
(
binunion
x0
x1
)
Theorem
50617..
binunion_asso
:
∀ x0 x1 x2 .
binunion
x0
(
binunion
x1
x2
)
=
binunion
(
binunion
x0
x1
)
x2
(proof)
Theorem
a8a0c..
:
∀ x0 x1 .
Subq
(
binunion
x0
x1
)
(
binunion
x1
x0
)
(proof)
Known
b3824..
set_ext
:
∀ x0 x1 .
Subq
x0
x1
⟶
Subq
x1
x0
⟶
x0
=
x1
Theorem
78b78..
binunion_com
:
∀ x0 x1 .
binunion
x0
x1
=
binunion
x1
x0
(proof)
Theorem
dae53..
binunion_idl
:
∀ x0 .
binunion
0
x0
=
x0
(proof)
Theorem
70cfd..
binunion_idr
:
∀ x0 .
binunion
x0
0
=
x0
(proof)
Theorem
58eb6..
binunion_idem
:
∀ x0 .
binunion
x0
x0
=
x0
(proof)
Theorem
7570e..
binunion_Subq_1
:
∀ x0 x1 .
Subq
x0
(
binunion
x0
x1
)
(proof)
Theorem
de882..
binunion_Subq_2
:
∀ x0 x1 .
Subq
x1
(
binunion
x0
x1
)
(proof)
Known
c1173..
Subq_def
:
Subq
=
λ x1 x2 .
∀ x3 .
In
x3
x1
⟶
In
x3
x2
Theorem
75230..
binunion_Subq_min
:
∀ x0 x1 x2 .
Subq
x0
x2
⟶
Subq
x1
x2
⟶
Subq
(
binunion
x0
x1
)
x2
(proof)
Known
prop_ext_2
prop_ext_2
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
x0
=
x1
Known
6696a..
Subq_ref
:
∀ x0 .
Subq
x0
x0
Theorem
69c3f..
Subq_binunion_eq
:
∀ x0 x1 .
Subq
x0
x1
=
(
binunion
x0
x1
=
x1
)
(proof)
Known
9d2e6..
nIn_I2
:
∀ x0 x1 .
(
In
x0
x1
⟶
False
)
⟶
nIn
x0
x1
Theorem
d22e3..
binunion_nIn_I
:
∀ x0 x1 x2 .
nIn
x2
x0
⟶
nIn
x2
x1
⟶
nIn
x2
(
binunion
x0
x1
)
(proof)
Theorem
68d17..
binunion_nIn_E
:
∀ x0 x1 x2 .
nIn
x2
(
binunion
x0
x1
)
⟶
and
(
nIn
x2
x0
)
(
nIn
x2
x1
)
(proof)
Theorem
17efc..
binunion_nIn_E_impred
:
∀ x0 x1 x2 .
nIn
x2
(
binunion
x0
x1
)
⟶
∀ x3 : ο .
(
nIn
x2
x0
⟶
nIn
x2
x1
⟶
x3
)
⟶
x3
(proof)
Known
52527..
binintersect_def
:
binintersect
=
λ x1 x2 .
Sep
x1
(
λ x3 .
In
x3
x2
)
Theorem
dd25c..
binintersectI
:
∀ x0 x1 x2 .
In
x2
x0
⟶
In
x2
x1
⟶
In
x2
(
binintersect
x0
x1
)
(proof)
Theorem
277ae..
binintersectE
:
∀ x0 x1 x2 .
In
x2
(
binintersect
x0
x1
)
⟶
and
(
In
x2
x0
)
(
In
x2
x1
)
(proof)
Theorem
9c451..
binintersectE_impred
:
∀ x0 x1 x2 .
In
x2
(
binintersect
x0
x1
)
⟶
∀ x3 : ο .
(
In
x2
x0
⟶
In
x2
x1
⟶
x3
)
⟶
x3
(proof)
Theorem
c5fa0..
binintersectE1
:
∀ x0 x1 x2 .
In
x2
(
binintersect
x0
x1
)
⟶
In
x2
x0
(proof)
Theorem
5317c..
binintersectE2
:
∀ x0 x1 x2 .
In
x2
(
binintersect
x0
x1
)
⟶
In
x2
x1
(proof)
Theorem
05c0a..
binintersect_Subq_1
:
∀ x0 x1 .
Subq
(
binintersect
x0
x1
)
x0
(proof)
Theorem
df480..
binintersect_Subq_2
:
∀ x0 x1 .
Subq
(
binintersect
x0
x1
)
x1
(proof)
Known
367e6..
SubqE
:
∀ x0 x1 .
Subq
x0
x1
⟶
∀ x2 .
In
x2
x0
⟶
In
x2
x1
Theorem
485cd..
binintersect_Subq_eq_1
:
∀ x0 x1 .
Subq
x0
x1
⟶
binintersect
x0
x1
=
x0
(proof)
Theorem
b962e..
binintersect_Subq_max
:
∀ x0 x1 x2 .
Subq
x2
x0
⟶
Subq
x2
x1
⟶
Subq
x2
(
binintersect
x0
x1
)
(proof)
Known
2ad64..
Subq_tra
:
∀ x0 x1 x2 .
Subq
x0
x1
⟶
Subq
x1
x2
⟶
Subq
x0
x2
Theorem
0964f..
binintersect_asso
:
∀ x0 x1 x2 .
binintersect
x0
(
binintersect
x1
x2
)
=
binintersect
(
binintersect
x0
x1
)
x2
(proof)
Theorem
f946b..
:
∀ x0 x1 .
Subq
(
binintersect
x0
x1
)
(
binintersect
x1
x0
)
(proof)
Theorem
6b560..
binintersect_com
:
∀ x0 x1 .
binintersect
x0
x1
=
binintersect
x1
x0
(proof)
Known
d6778..
Empty_Subq_eq
:
∀ x0 .
Subq
x0
0
⟶
x0
=
0
Theorem
ef0ec..
binintersect_annil
:
∀ x0 .
binintersect
0
x0
=
0
(proof)
Theorem
a46a3..
binintersect_annir
:
∀ x0 .
binintersect
x0
0
=
0
(proof)
Theorem
8ca5a..
binintersect_idem
:
∀ x0 .
binintersect
x0
x0
=
x0
(proof)
Theorem
f1349..
binintersect_binunion_distr
:
∀ x0 x1 x2 .
binintersect
x0
(
binunion
x1
x2
)
=
binunion
(
binintersect
x0
x1
)
(
binintersect
x0
x2
)
(proof)
Theorem
12c26..
binunion_binintersect_distr
:
∀ x0 x1 x2 .
binunion
x0
(
binintersect
x1
x2
)
=
binintersect
(
binunion
x0
x1
)
(
binunion
x0
x2
)
(proof)
Theorem
5e05c..
Subq_binintersection_eq
:
∀ x0 x1 .
Subq
x0
x1
=
(
binintersect
x0
x1
=
x0
)
(proof)
Theorem
d11f4..
binintersect_nIn_I1
:
∀ x0 x1 x2 .
nIn
x2
x0
⟶
nIn
x2
(
binintersect
x0
x1
)
(proof)
Theorem
4c3a8..
binintersect_nIn_I2
:
∀ x0 x1 x2 .
nIn
x2
x1
⟶
nIn
x2
(
binintersect
x0
x1
)
(proof)
Theorem
d7630..
binintersect_nIn_E
:
∀ x0 x1 x2 .
nIn
x2
(
binintersect
x0
x1
)
⟶
or
(
nIn
x2
x0
)
(
nIn
x2
x1
)
(proof)
Known
37124..
orE
:
∀ x0 x1 : ο .
or
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Theorem
1ac88..
binintersect_nIn_E_impred
:
∀ x0 x1 x2 .
nIn
x2
(
binintersect
x0
x1
)
⟶
∀ x3 : ο .
(
nIn
x2
x0
⟶
x3
)
⟶
(
nIn
x2
x1
⟶
x3
)
⟶
x3
(proof)
Theorem
5d6fd..
tab_pos_binintersect
:
∀ x0 x1 x2 .
In
x2
(
binintersect
x0
x1
)
⟶
(
In
x2
x0
⟶
In
x2
x1
⟶
False
)
⟶
False
(proof)
Theorem
30a90..
tab_neg_binintersect
:
∀ x0 x1 x2 .
nIn
x2
(
binintersect
x0
x1
)
⟶
(
nIn
x2
x0
⟶
False
)
⟶
(
nIn
x2
x1
⟶
False
)
⟶
False
(proof)
Known
f5588..
setminus_def
:
setminus
=
λ x1 x2 .
Sep
x1
(
λ x3 .
nIn
x3
x2
)
Theorem
626dc..
setminusI
:
∀ x0 x1 x2 .
In
x2
x0
⟶
nIn
x2
x1
⟶
In
x2
(
setminus
x0
x1
)
(proof)
Theorem
349f7..
setminusE
:
∀ x0 x1 x2 .
In
x2
(
setminus
x0
x1
)
⟶
and
(
In
x2
x0
)
(
nIn
x2
x1
)
(proof)
Theorem
243aa..
setminusE_impred
:
∀ x0 x1 x2 .
In
x2
(
setminus
x0
x1
)
⟶
∀ x3 : ο .
(
In
x2
x0
⟶
nIn
x2
x1
⟶
x3
)
⟶
x3
(proof)
Theorem
54d83..
setminusE1
:
∀ x0 x1 x2 .
In
x2
(
setminus
x0
x1
)
⟶
In
x2
x0
(proof)
Theorem
28403..
setminusE2
:
∀ x0 x1 x2 .
In
x2
(
setminus
x0
x1
)
⟶
nIn
x2
x1
(proof)
Theorem
74206..
setminus_Subq
:
∀ x0 x1 .
Subq
(
setminus
x0
x1
)
x0
(proof)
Known
a7ffa..
Subq_contra
:
∀ x0 x1 x2 .
Subq
x0
x1
⟶
nIn
x2
x1
⟶
nIn
x2
x0
Theorem
8b73d..
setminus_Subq_contra
:
∀ x0 x1 x2 .
Subq
x2
x1
⟶
Subq
(
setminus
x0
x1
)
(
setminus
x0
x2
)
(proof)
Theorem
6502f..
setminus_nIn_I1
:
∀ x0 x1 x2 .
nIn
x2
x0
⟶
nIn
x2
(
setminus
x0
x1
)
(proof)
Theorem
6d89c..
setminus_nIn_I2
:
∀ x0 x1 x2 .
In
x2
x1
⟶
nIn
x2
(
setminus
x0
x1
)
(proof)
Theorem
2c30c..
setminus_nIn_E
:
∀ x0 x1 x2 .
nIn
x2
(
setminus
x0
x1
)
⟶
or
(
nIn
x2
x0
)
(
In
x2
x1
)
(proof)
Theorem
af072..
setminus_nIn_E_impred
:
∀ x0 x1 x2 .
nIn
x2
(
setminus
x0
x1
)
⟶
∀ x3 : ο .
(
nIn
x2
x0
⟶
x3
)
⟶
(
In
x2
x1
⟶
x3
)
⟶
x3
(proof)
Known
d0de4..
Empty_eq
:
∀ x0 .
(
∀ x1 .
nIn
x1
x0
)
⟶
x0
=
0
Theorem
24940..
setminus_selfannih
:
∀ x0 .
setminus
x0
x0
=
0
(proof)
Theorem
a43ed..
setminus_binintersect
:
∀ x0 x1 x2 .
setminus
x0
(
binintersect
x1
x2
)
=
binunion
(
setminus
x0
x1
)
(
setminus
x0
x2
)
(proof)
Theorem
f0846..
setminus_binunion
:
∀ x0 x1 x2 .
setminus
x0
(
binunion
x1
x2
)
=
setminus
(
setminus
x0
x1
)
x2
(proof)
Theorem
e58ae..
binintersect_setminus
:
∀ x0 x1 x2 .
setminus
(
binintersect
x0
x1
)
x2
=
binintersect
x0
(
setminus
x1
x2
)
(proof)
Theorem
1a1e7..
binunion_setminus
:
∀ x0 x1 x2 .
setminus
(
binunion
x0
x1
)
x2
=
binunion
(
setminus
x0
x2
)
(
setminus
x1
x2
)
(proof)
Theorem
0253c..
setminus_setminus
:
∀ x0 x1 x2 .
setminus
x0
(
setminus
x1
x2
)
=
binunion
(
setminus
x0
x1
)
(
binintersect
x0
x2
)
(proof)
Theorem
0227e..
setminus_annil
:
∀ x0 .
setminus
0
x0
=
0
(proof)
Known
3cfc3..
nIn_Empty
:
∀ x0 .
nIn
x0
0
Theorem
5ff7d..
setminus_idr
:
∀ x0 .
setminus
x0
0
=
x0
(proof)
Theorem
b4d92..
tab_pos_setminus
:
∀ x0 x1 x2 .
In
x2
(
setminus
x0
x1
)
⟶
(
In
x2
x0
⟶
nIn
x2
x1
⟶
False
)
⟶
False
(proof)
Theorem
34f38..
tab_neg_setminus
:
∀ x0 x1 x2 .
nIn
x2
(
setminus
x0
x1
)
⟶
(
nIn
x2
x0
⟶
False
)
⟶
(
In
x2
x1
⟶
False
)
⟶
False
(proof)