Search for blocks/addresses/...
Proofgold Asset
asset id
27237e896c2990a72d63098fbafd4618013f0f0ee0b77c6d7deb3f68ded1244d
asset hash
e141cea506018b710ca6e0c77996a5c1bc6a3ac831378d051a57de85c0b5955d
bday / block
35146
tx
226d4..
preasset
doc published by
PrPhD..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Theorem
73cf8..
:
∀ x0 :
ι → ο
.
∀ x1 .
∀ x2 :
ι → ι
.
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 .
∀ x6 :
ι →
ι → ι
.
∀ x7 :
ι → ι
.
∀ x8 :
ι →
ι → ι
.
∀ x9 .
∀ x10 :
ι → ι
.
∀ x11 x12 :
ι →
ι → ο
.
∀ x13 .
∀ x14 :
ι → ι
.
∀ x15 x16 .
∀ x17 :
ι →
ι →
ι → ο
.
∀ x18 .
∀ x19 :
ι →
ι → ι
.
∀ x20 x21 .
∀ x22 :
ι → ο
.
∀ x23 x24 .
∀ x25 x26 :
ι → ι
.
∀ x27 x28 x29 x30 x31 :
ι → ο
.
∀ x32 .
∀ x33 x34 :
ι → ο
.
∀ x35 :
ι →
ι → ι
.
∀ x36 :
ι → ο
.
∀ x37 x38 x39 .
∀ x40 x41 x42 :
ι → ο
.
∀ x43 :
ι →
ι → ι
.
∀ x44 x45 :
ι → ι
.
∀ x46 x47 :
ι →
ι → ι
.
∀ x48 :
ι → ο
.
∀ x49 .
∀ x50 :
ι → ο
.
∀ x51 :
ι →
ι → ο
.
∀ x52 :
ι → ο
.
(
∀ x53 x54 .
x52
x54
⟶
(
x54
=
x53
⟶
False
)
⟶
x52
x53
⟶
False
)
⟶
(
∀ x53 x54 .
x0
x54
⟶
x0
x53
⟶
(
x2
x54
=
x1
⟶
False
)
⟶
(
x2
x53
=
x1
⟶
False
)
⟶
(
x7
(
x8
x54
x53
)
=
x6
(
x8
(
x7
x54
)
(
x7
x53
)
)
(
x3
x5
(
x4
(
x7
x54
)
(
x7
x53
)
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x53 x54 .
x51
x53
x54
⟶
x52
x54
⟶
False
)
⟶
(
∀ x53 .
x52
x53
⟶
(
x53
=
x9
⟶
False
)
⟶
False
)
⟶
(
∀ x53 .
x50
x53
⟶
(
x6
x53
x5
=
x53
⟶
False
)
⟶
False
)
⟶
(
∀ x53 x54 x55 .
x51
x53
x54
⟶
x11
x54
(
x10
x55
)
⟶
x52
x55
⟶
False
)
⟶
(
∀ x53 .
x50
x53
⟶
(
x6
x1
x53
=
x1
⟶
False
)
⟶
False
)
⟶
(
∀ x53 x54 x55 .
x51
x54
x55
⟶
x11
x55
(
x10
x53
)
⟶
(
x11
x54
x53
⟶
False
)
⟶
False
)
⟶
(
∀ x53 .
x50
x53
⟶
(
x3
x53
x1
=
x53
⟶
False
)
⟶
False
)
⟶
(
∀ x53 x54 .
x12
x54
x53
⟶
(
x11
x54
(
x10
x53
)
⟶
False
)
⟶
False
)
⟶
(
∀ x53 x54 .
x11
x54
(
x10
x53
)
⟶
(
x12
x54
x53
⟶
False
)
⟶
False
)
⟶
(
∀ x53 .
x50
x53
⟶
(
x4
x5
x53
=
x53
⟶
False
)
⟶
False
)
⟶
(
∀ x53 x54 .
x11
x53
x54
⟶
(
x52
x54
⟶
False
)
⟶
(
x51
x53
x54
⟶
False
)
⟶
False
)
⟶
(
∀ x53 .
x50
x53
⟶
(
x4
x53
x1
=
x1
⟶
False
)
⟶
False
)
⟶
(
∀ x53 x54 .
x51
x54
x53
⟶
(
x11
x54
x53
⟶
False
)
⟶
False
)
⟶
(
(
x11
x9
x13
⟶
False
)
⟶
False
)
⟶
(
∀ x53 .
x50
x53
⟶
(
x8
x53
x1
=
x53
⟶
False
)
⟶
False
)
⟶
(
∀ x53 x54 .
x50
x54
⟶
x50
x53
⟶
(
x3
(
x14
x54
)
(
x14
x53
)
=
x3
x53
x54
⟶
False
)
⟶
False
)
⟶
(
∀ x53 x54 .
x50
x54
⟶
x50
x53
⟶
(
x8
(
x14
x54
)
(
x14
x53
)
=
x14
(
x8
x54
x53
)
⟶
False
)
⟶
False
)
⟶
(
∀ x53 x54 x55 .
x50
x55
⟶
x50
x53
⟶
x50
x54
⟶
(
x4
(
x4
x55
x53
)
x54
=
x4
x55
(
x4
x53
x54
)
⟶
False
)
⟶
False
)
⟶
(
∀ x53 x54 x55 .
x50
x55
⟶
x50
x53
⟶
x50
x54
⟶
(
x8
(
x8
x55
x53
)
x54
=
x8
x55
(
x8
x53
x54
)
⟶
False
)
⟶
False
)
⟶
(
∀ x53 x54 x55 .
x50
x55
⟶
x50
x53
⟶
x50
x54
⟶
(
x4
(
x8
x55
x53
)
x54
=
x8
(
x4
x55
x54
)
(
x4
x53
x54
)
⟶
False
)
⟶
False
)
⟶
(
∀ x53 x54 x55 .
x50
x55
⟶
x50
x53
⟶
x50
x54
⟶
(
x4
x55
(
x6
x53
x54
)
=
x6
(
x4
x55
x53
)
x54
⟶
False
)
⟶
False
)
⟶
(
(
x11
x16
x15
⟶
False
)
⟶
False
)
⟶
(
(
x11
x16
x49
⟶
False
)
⟶
False
)
⟶
(
(
x17
x16
x15
x49
⟶
False
)
⟶
False
)
⟶
(
(
x48
x16
⟶
False
)
⟶
False
)
⟶
(
x52
x16
⟶
False
)
⟶
(
∀ x53 .
x50
x53
⟶
(
x4
x53
(
x14
x5
)
=
x14
x53
⟶
False
)
⟶
False
)
⟶
(
(
x11
x5
x15
⟶
False
)
⟶
False
)
⟶
(
(
x11
x5
x49
⟶
False
)
⟶
False
)
⟶
(
(
x17
x5
x15
x49
⟶
False
)
⟶
False
)
⟶
(
(
x48
x5
⟶
False
)
⟶
False
)
⟶
(
x52
x5
⟶
False
)
⟶
(
∀ x53 x54 .
x50
x54
⟶
x50
x53
⟶
(
x8
x54
(
x14
x53
)
=
x3
x54
x53
⟶
False
)
⟶
False
)
⟶
(
(
x11
x18
x15
⟶
False
)
⟶
False
)
⟶
(
(
x11
x18
x49
⟶
False
)
⟶
False
)
⟶
(
(
x17
x18
x15
x49
⟶
False
)
⟶
False
)
⟶
(
(
x52
x18
⟶
False
)
⟶
False
)
⟶
(
(
x14
(
x6
(
x14
x5
)
x16
)
=
x6
x5
x16
⟶
False
)
⟶
False
)
⟶
(
(
x14
(
x6
x5
x16
)
=
x6
(
x14
x5
)
x16
⟶
False
)
⟶
False
)
⟶
(
(
x14
(
x14
x16
)
=
x16
⟶
False
)
⟶
False
)
⟶
(
(
x14
(
x14
x5
)
=
x5
⟶
False
)
⟶
False
)
⟶
(
(
x14
x16
=
x14
x16
⟶
False
)
⟶
False
)
⟶
(
(
x14
x5
=
x14
x5
⟶
False
)
⟶
False
)
⟶
(
(
x14
x18
=
x18
⟶
False
)
⟶
False
)
⟶
(
(
x4
(
x6
(
x14
x5
)
x16
)
(
x14
x16
)
=
x5
⟶
False
)
⟶
False
)
⟶
(
(
x4
(
x6
(
x14
x5
)
x16
)
x16
=
x14
x5
⟶
False
)
⟶
False
)
⟶
(
(
x4
(
x6
(
x14
x5
)
x16
)
x5
=
x6
(
x14
x5
)
x16
⟶
False
)
⟶
False
)
⟶
(
(
x4
(
x6
x5
x16
)
(
x14
x16
)
=
x14
x5
⟶
False
)
⟶
False
)
⟶
(
(
x4
(
x6
x5
x16
)
x16
=
x5
⟶
False
)
⟶
False
)
⟶
(
(
x4
(
x6
x5
x16
)
x5
=
x6
x5
x16
⟶
False
)
⟶
False
)
⟶
(
(
x4
(
x6
x5
x16
)
x18
=
x18
⟶
False
)
⟶
False
)
⟶
(
(
x4
(
x14
x16
)
(
x6
(
x14
x5
)
x16
)
=
x5
⟶
False
)
⟶
False
)
⟶
(
(
x4
(
x14
x16
)
(
x6
x5
x16
)
=
x14
x5
⟶
False
)
⟶
False
)
⟶
(
(
x4
(
x14
x16
)
x5
=
x14
x16
⟶
False
)
⟶
False
)
⟶
(
(
x4
(
x14
x16
)
x18
=
x18
⟶
False
)
⟶
False
)
⟶
(
(
x4
x16
(
x6
(
x14
x5
)
x16
)
=
x14
x5
⟶
False
)
⟶
False
)
⟶
(
(
x4
x16
(
x6
x5
x16
)
=
x5
⟶
False
)
⟶
False
)
⟶
(
(
x4
x16
x5
=
x16
⟶
False
)
⟶
False
)
⟶
(
(
x4
x16
x18
=
x18
⟶
False
)
⟶
False
)
⟶
(
(
x4
x5
(
x6
(
x14
x5
)
x16
)
=
x6
(
x14
x5
)
x16
⟶
False
)
⟶
False
)
⟶
(
(
x4
x5
(
x6
x5
x16
)
=
x6
x5
x16
⟶
False
)
⟶
False
)
⟶
(
(
x4
x5
(
x14
x16
)
=
x14
x16
⟶
False
)
⟶
False
)
⟶
(
(
x4
x5
x16
=
x16
⟶
False
)
⟶
False
)
⟶
(
(
x4
x5
x5
=
x5
⟶
False
)
⟶
False
)
⟶
(
(
x4
x5
x18
=
x18
⟶
False
)
⟶
False
)
⟶
(
(
x4
x18
(
x6
x5
x16
)
=
x18
⟶
False
)
⟶
False
)
⟶
(
(
x4
x18
(
x14
x16
)
=
x18
⟶
False
)
⟶
False
)
⟶
(
(
x4
x18
x16
=
x18
⟶
False
)
⟶
False
)
⟶
(
(
x4
x18
x5
=
x18
⟶
False
)
⟶
False
)
⟶
(
(
x4
x18
x18
=
x18
⟶
False
)
⟶
False
)
⟶
(
(
x6
(
x14
x16
)
x16
=
x14
x5
⟶
False
)
⟶
False
)
⟶
(
(
x6
(
x14
x5
)
x16
=
x6
(
x14
x5
)
x16
⟶
False
)
⟶
False
)
⟶
(
(
x6
(
x14
x5
)
x5
=
x14
x5
⟶
False
)
⟶
False
)
⟶
(
(
x6
x16
x16
=
x5
⟶
False
)
⟶
False
)
⟶
(
(
x6
x16
x5
=
x16
⟶
False
)
⟶
False
)
⟶
(
(
x6
x5
(
x6
(
x14
x5
)
x16
)
=
x14
x16
⟶
False
)
⟶
False
)
⟶
(
(
x6
x5
(
x6
x5
x16
)
=
x16
⟶
False
)
⟶
False
)
⟶
(
(
x6
x5
(
x14
x16
)
=
x6
(
x14
x5
)
x16
⟶
False
)
⟶
False
)
⟶
(
(
x6
x5
(
x14
x5
)
=
x14
x5
⟶
False
)
⟶
False
)
⟶
(
(
x6
x5
x16
=
x6
x5
x16
⟶
False
)
⟶
False
)
⟶
(
(
x6
x5
x5
=
x5
⟶
False
)
⟶
False
)
⟶
(
(
x3
(
x6
(
x14
x5
)
x16
)
(
x6
(
x14
x5
)
x16
)
=
x18
⟶
False
)
⟶
False
)
⟶
(
(
x3
(
x6
(
x14
x5
)
x16
)
(
x6
x5
x16
)
=
x14
x5
⟶
False
)
⟶
False
)
⟶
(
(
x3
(
x6
(
x14
x5
)
x16
)
(
x14
x5
)
=
x6
x5
x16
⟶
False
)
⟶
False
)
⟶
(
(
x3
(
x6
(
x14
x5
)
x16
)
x18
=
x6
(
x14
x5
)
x16
⟶
False
)
⟶
False
)
⟶
(
(
x3
(
x6
x5
x16
)
(
x6
(
x14
x5
)
x16
)
=
x5
⟶
False
)
⟶
False
)
⟶
(
(
x3
(
x6
x5
x16
)
(
x6
x5
x16
)
=
x18
⟶
False
)
⟶
False
)
⟶
(
(
x3
(
x6
x5
x16
)
x5
=
x6
(
x14
x5
)
x16
⟶
False
)
⟶
False
)
⟶
(
(
x3
(
x6
x5
x16
)
x18
=
x6
x5
x16
⟶
False
)
⟶
False
)
⟶
(
(
x3
(
x14
x16
)
(
x14
x16
)
=
x18
⟶
False
)
⟶
False
)
⟶
(
(
x3
(
x14
x16
)
(
x14
x5
)
=
x14
x5
⟶
False
)
⟶
False
)
⟶
(
(
x3
(
x14
x16
)
x18
=
x14
x16
⟶
False
)
⟶
False
)
⟶
(
(
x3
(
x14
x5
)
(
x6
(
x14
x5
)
x16
)
=
x6
(
x14
x5
)
x16
⟶
False
)
⟶
False
)
⟶
(
(
x3
(
x14
x5
)
(
x14
x16
)
=
x5
⟶
False
)
⟶
False
)
⟶
(
(
x3
(
x14
x5
)
(
x14
x5
)
=
x18
⟶
False
)
⟶
False
)
⟶
(
(
x3
(
x14
x5
)
x5
=
x14
x16
⟶
False
)
⟶
False
)
⟶
(
(
x3
(
x14
x5
)
x18
=
x14
x5
⟶
False
)
⟶
False
)
⟶
(
(
x3
x16
x16
=
x18
⟶
False
)
⟶
False
)
⟶
(
(
x3
x16
x5
=
x5
⟶
False
)
⟶
False
)
⟶
(
(
x3
x16
x18
=
x16
⟶
False
)
⟶
False
)
⟶
(
(
x3
x5
(
x6
x5
x16
)
=
x6
x5
x16
⟶
False
)
⟶
False
)
⟶
(
(
x3
x5
(
x14
x5
)
=
x16
⟶
False
)
⟶
False
)
⟶
(
(
x3
x5
x16
=
x14
x5
⟶
False
)
⟶
False
)
⟶
(
(
x3
x5
x5
=
x18
⟶
False
)
⟶
False
)
⟶
(
(
x3
x5
x18
=
x5
⟶
False
)
⟶
False
)
⟶
(
(
x3
x18
(
x6
(
x14
x5
)
x16
)
=
x6
x5
x16
⟶
False
)
⟶
False
)
⟶
(
(
x3
x18
(
x6
x5
x16
)
=
x6
(
x14
x5
)
x16
⟶
False
)
⟶
False
)
⟶
(
(
x3
x18
(
x14
x16
)
=
x16
⟶
False
)
⟶
False
)
⟶
(
(
x3
x18
(
x14
x5
)
=
x5
⟶
False
)
⟶
False
)
⟶
(
(
x3
x18
x16
=
x14
x16
⟶
False
)
⟶
False
)
⟶
(
(
x3
x18
x5
=
x14
x5
⟶
False
)
⟶
False
)
⟶
(
(
x3
x18
x18
=
x18
⟶
False
)
⟶
False
)
⟶
(
(
x8
(
x6
(
x14
x5
)
x16
)
(
x6
(
x14
x5
)
x16
)
=
x14
x5
⟶
False
)
⟶
False
)
⟶
(
(
x8
(
x6
(
x14
x5
)
x16
)
(
x6
x5
x16
)
=
x18
⟶
False
)
⟶
False
)
⟶
(
(
x8
(
x6
(
x14
x5
)
x16
)
x5
=
x6
x5
x16
⟶
False
)
⟶
False
)
⟶
(
(
x8
(
x6
x5
x16
)
(
x6
(
x14
x5
)
x16
)
=
x18
⟶
False
)
⟶
False
)
⟶
(
(
x8
(
x6
x5
x16
)
(
x6
x5
x16
)
=
x5
⟶
False
)
⟶
False
)
⟶
(
(
x8
(
x6
x5
x16
)
(
x14
x5
)
=
x6
(
x14
x5
)
x16
⟶
False
)
⟶
False
)
⟶
(
(
x8
(
x6
x5
x16
)
x18
=
x6
x5
x16
⟶
False
)
⟶
False
)
⟶
(
(
x8
(
x14
x16
)
x16
=
x18
⟶
False
)
⟶
False
)
⟶
(
(
x8
(
x14
x16
)
x5
=
x14
x5
⟶
False
)
⟶
False
)
⟶
(
(
x8
(
x14
x5
)
(
x6
x5
x16
)
=
x6
(
x14
x5
)
x16
⟶
False
)
⟶
False
)
⟶
(
(
x8
(
x14
x5
)
(
x14
x5
)
=
x14
x16
⟶
False
)
⟶
False
)
⟶
(
(
x8
(
x14
x5
)
x16
=
x5
⟶
False
)
⟶
False
)
⟶
(
(
x8
(
x14
x5
)
x5
=
x18
⟶
False
)
⟶
False
)
⟶
(
(
x8
(
x14
x5
)
x18
=
x14
x5
⟶
False
)
⟶
False
)
⟶
(
(
x8
x16
(
x14
x16
)
=
x18
⟶
False
)
⟶
False
)
⟶
(
(
x8
x16
(
x14
x5
)
=
x5
⟶
False
)
⟶
False
)
⟶
(
(
x8
x16
x18
=
x16
⟶
False
)
⟶
False
)
⟶
(
(
x8
x5
(
x6
(
x14
x5
)
x16
)
=
x6
x5
x16
⟶
False
)
⟶
False
)
⟶
(
(
x8
x5
(
x14
x16
)
=
x14
x5
⟶
False
)
⟶
False
)
⟶
(
(
x8
x5
(
x14
x5
)
=
x18
⟶
False
)
⟶
False
)
⟶
(
(
x8
x5
x5
=
x16
⟶
False
)
⟶
False
)
⟶
(
(
x8
x5
x18
=
x5
⟶
False
)
⟶
False
)
⟶
(
(
x8
x18
(
x6
(
x14
x5
)
x16
)
=
x6
(
x14
x5
)
x16
⟶
False
)
⟶
False
)
⟶
(
(
x8
x18
(
x6
x5
x16
)
=
x6
x5
x16
⟶
False
)
⟶
False
)
⟶
(
(
x8
x18
(
x14
x16
)
=
x14
x16
⟶
False
)
⟶
False
)
⟶
(
(
x8
x18
(
x14
x5
)
=
x14
x5
⟶
False
)
⟶
False
)
⟶
(
(
x8
x18
x16
=
x16
⟶
False
)
⟶
False
)
⟶
(
(
x8
x18
x5
=
x5
⟶
False
)
⟶
False
)
⟶
(
(
x8
x18
x18
=
x18
⟶
False
)
⟶
False
)
⟶
(
∀ x53 .
(
x12
x53
x53
⟶
False
)
⟶
False
)
⟶
(
∀ x53 x54 x55 .
(
x52
x55
⟶
False
)
⟶
(
x52
x53
⟶
False
)
⟶
x11
x53
(
x10
x55
)
⟶
x11
x54
x53
⟶
(
x17
x54
x55
x53
⟶
False
)
⟶
False
)
⟶
(
∀ x53 x54 x55 .
(
x52
x55
⟶
False
)
⟶
(
x52
x53
⟶
False
)
⟶
x11
x53
(
x10
x55
)
⟶
x17
x54
x55
x53
⟶
(
x11
x54
x53
⟶
False
)
⟶
False
)
⟶
(
∀ x53 x54 .
x11
x54
x15
⟶
x0
x53
⟶
(
x47
x54
x53
=
x3
x54
x53
⟶
False
)
⟶
False
)
⟶
(
∀ x53 x54 .
x11
x54
x15
⟶
x0
x53
⟶
(
x19
x54
x53
=
x4
x54
x53
⟶
False
)
⟶
False
)
⟶
(
∀ x53 x54 .
x11
x54
x15
⟶
x0
x53
⟶
(
x46
x54
x53
=
x8
x54
x53
⟶
False
)
⟶
False
)
⟶
(
(
x1
=
x9
⟶
False
)
⟶
False
)
⟶
(
∀ x53 .
x11
x53
x15
⟶
(
x45
x53
=
x44
x53
⟶
False
)
⟶
False
)
⟶
(
(
x49
=
x13
⟶
False
)
⟶
False
)
⟶
(
∀ x53 x54 .
x11
x54
x15
⟶
x0
x53
⟶
(
x43
x54
x53
=
x6
x54
x53
⟶
False
)
⟶
False
)
⟶
(
(
x0
x20
⟶
False
)
⟶
False
)
⟶
(
(
x42
x20
⟶
False
)
⟶
False
)
⟶
(
(
x50
x20
⟶
False
)
⟶
False
)
⟶
(
(
x52
x20
⟶
False
)
⟶
False
)
⟶
(
(
x0
x21
⟶
False
)
⟶
False
)
⟶
(
(
x41
x21
⟶
False
)
⟶
False
)
⟶
(
(
x42
x21
⟶
False
)
⟶
False
)
⟶
(
(
x50
x21
⟶
False
)
⟶
False
)
⟶
(
(
x22
x23
⟶
False
)
⟶
False
)
⟶
(
(
x40
x23
⟶
False
)
⟶
False
)
⟶
(
x52
x23
⟶
False
)
⟶
(
(
x0
x39
⟶
False
)
⟶
False
)
⟶
(
(
x48
x39
⟶
False
)
⟶
False
)
⟶
(
(
x42
x39
⟶
False
)
⟶
False
)
⟶
(
(
x50
x39
⟶
False
)
⟶
False
)
⟶
(
(
x40
x38
⟶
False
)
⟶
False
)
⟶
(
x52
x38
⟶
False
)
⟶
(
(
x0
x37
⟶
False
)
⟶
False
)
⟶
(
(
x40
x24
⟶
False
)
⟶
False
)
⟶
(
x52
x24
⟶
False
)
⟶
(
∀ x53 .
x50
x53
⟶
(
x14
(
x14
x53
)
=
x53
⟶
False
)
⟶
False
)
⟶
(
∀ x53 x54 .
(
x41
x54
⟶
False
)
⟶
x0
x54
⟶
(
x41
x53
⟶
False
)
⟶
x0
x53
⟶
x41
(
x8
x54
x53
)
⟶
False
)
⟶
(
∀ x53 x54 .
x0
x54
⟶
x0
x53
⟶
(
x0
(
x6
x54
x53
)
⟶
False
)
⟶
False
)
⟶
(
∀ x53 x54 .
x0
x54
⟶
x0
x53
⟶
(
x0
(
x3
x54
x53
)
⟶
False
)
⟶
False
)
⟶
(
∀ x53 x54 .
x0
x54
⟶
x0
x53
⟶
(
x0
(
x4
x54
x53
)
⟶
False
)
⟶
False
)
⟶
(
(
x40
x13
⟶
False
)
⟶
False
)
⟶
(
∀ x53 x54 .
x0
x54
⟶
x0
x53
⟶
(
x0
(
x8
x54
x53
)
⟶
False
)
⟶
False
)
⟶
(
(
x22
x13
⟶
False
)
⟶
False
)
⟶
(
(
x22
x15
⟶
False
)
⟶
False
)
⟶
(
∀ x53 .
x0
x53
⟶
(
x0
(
x2
x53
)
⟶
False
)
⟶
False
)
⟶
(
∀ x53 .
x0
x53
⟶
(
x0
(
x14
x53
)
⟶
False
)
⟶
False
)
⟶
(
∀ x53 .
x0
x53
⟶
(
x50
(
x14
x53
)
⟶
False
)
⟶
False
)
⟶
(
∀ x53 .
x0
x53
⟶
(
x0
(
x25
x53
)
⟶
False
)
⟶
False
)
⟶
(
(
x36
x15
⟶
False
)
⟶
False
)
⟶
(
∀ x53 x54 .
(
x48
x54
⟶
False
)
⟶
x0
x54
⟶
(
x48
x53
⟶
False
)
⟶
x0
x53
⟶
x41
(
x6
x54
x53
)
⟶
False
)
⟶
(
∀ x53 x54 .
(
x41
x54
⟶
False
)
⟶
x0
x54
⟶
(
x41
x53
⟶
False
)
⟶
x0
x53
⟶
x41
(
x6
x54
x53
)
⟶
False
)
⟶
(
∀ x53 x54 .
(
x41
x54
⟶
False
)
⟶
x0
x54
⟶
(
x48
x53
⟶
False
)
⟶
x0
x53
⟶
x48
(
x6
x53
x54
)
⟶
False
)
⟶
(
∀ x53 x54 .
(
x41
x54
⟶
False
)
⟶
x0
x54
⟶
(
x48
x53
⟶
False
)
⟶
x0
x53
⟶
x48
(
x6
x54
x53
)
⟶
False
)
⟶
(
∀ x53 .
x0
x53
⟶
(
x0
(
x44
x53
)
⟶
False
)
⟶
False
)
⟶
(
∀ x53 x54 .
(
x41
x54
⟶
False
)
⟶
x0
x54
⟶
(
x41
x53
⟶
False
)
⟶
x0
x53
⟶
x41
(
x4
x54
x53
)
⟶
False
)
⟶
(
∀ x53 x54 .
(
x48
x54
⟶
False
)
⟶
x0
x54
⟶
(
x48
x53
⟶
False
)
⟶
x0
x53
⟶
x41
(
x4
x54
x53
)
⟶
False
)
⟶
(
∀ x53 x54 .
(
x48
x54
⟶
False
)
⟶
x0
x54
⟶
(
x41
x53
⟶
False
)
⟶
x0
x53
⟶
x48
(
x4
x53
x54
)
⟶
False
)
⟶
(
∀ x53 x54 .
(
x48
x54
⟶
False
)
⟶
x0
x54
⟶
(
x41
x53
⟶
False
)
⟶
x0
x53
⟶
x48
(
x4
x54
x53
)
⟶
False
)
⟶
(
∀ x53 x54 .
x41
x54
⟶
x0
x54
⟶
(
x41
x53
⟶
False
)
⟶
x0
x53
⟶
(
x48
(
x3
x53
x54
)
⟶
False
)
⟶
False
)
⟶
(
∀ x53 x54 .
x41
x54
⟶
x0
x54
⟶
(
x41
x53
⟶
False
)
⟶
x0
x53
⟶
(
x41
(