Search for blocks/addresses/...
Proofgold Asset
asset id
d7271af516db379b4bcf22dfba8f6c36567ee376789d3aec5ac71850670b0f26
asset hash
e3342bc712ef3cf7fb55a0ea5e9cb02cd4993f908aee974dd70d514becbacedd
bday / block
4898
tx
d0fc7..
preasset
doc published by
Pr6Pc..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Definition
nSubq
nSubq
:=
λ x0 x1 .
not
(
x0
⊆
x1
)
Param
ordsucc
ordsucc
:
ι
→
ι
Known
neq_0_ordsucc
neq_0_ordsucc
:
∀ x0 .
0
=
ordsucc
x0
⟶
∀ x1 : ο .
x1
Theorem
neq_0_1
neq_0_1
:
0
=
1
⟶
∀ x0 : ο .
x0
(proof)
Theorem
neq_0_2
neq_0_2
:
0
=
2
⟶
∀ x0 : ο .
x0
(proof)
Known
ordsucc_inj_contra
ordsucc_inj_contra
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
ordsucc
x0
=
ordsucc
x1
⟶
∀ x2 : ο .
x2
Theorem
neq_1_2
neq_1_2
:
1
=
2
⟶
∀ x0 : ο .
x0
(proof)
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Theorem
nIn_0_0
nIn_0_0
:
nIn
0
0
(proof)
Theorem
nIn_1_0
nIn_1_0
:
nIn
1
0
(proof)
Theorem
nIn_2_0
nIn_2_0
:
nIn
2
0
(proof)
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Theorem
nIn_1_1
nIn_1_1
:
nIn
1
1
(proof)
Theorem
nIn_2_2
nIn_2_2
:
nIn
2
2
(proof)
Known
Subq_Empty
Subq_Empty
:
∀ x0 .
0
⊆
x0
Theorem
Subq_0_0
Subq_0_0
:
0
⊆
0
(proof)
Theorem
Subq_0_1
Subq_0_1
:
0
⊆
1
(proof)
Theorem
Subq_0_2
Subq_0_2
:
0
⊆
2
(proof)
Known
In_0_1
In_0_1
:
0
∈
1
Theorem
nSubq_1_0
nSubq_1_0
:
nSubq
1
0
(proof)
Known
Subq_ref
Subq_ref
:
∀ x0 .
x0
⊆
x0
Theorem
Subq_1_1
Subq_1_1
:
1
⊆
1
(proof)
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Theorem
Subq_1_2
Subq_1_2
:
1
⊆
2
(proof)
Known
In_0_2
In_0_2
:
0
∈
2
Theorem
nSubq_2_0
nSubq_2_0
:
nSubq
2
0
(proof)
Known
In_1_2
In_1_2
:
1
∈
2
Theorem
nSubq_2_1
nSubq_2_1
:
nSubq
2
1
(proof)
Theorem
Subq_2_2
Subq_2_2
:
2
⊆
2
(proof)
Param
nat_p
nat_p
:
ι
→
ο
Known
nat_complete_ind
nat_complete_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
nat_p
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
UnionE_impred
UnionE_impred
:
∀ x0 x1 .
x1
∈
prim3
x0
⟶
∀ x2 : ο .
(
∀ x3 .
x1
∈
x3
⟶
x3
∈
x0
⟶
x2
)
⟶
x2
Known
nat_ordsucc_trans
nat_ordsucc_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
ordsucc
x0
⟶
x1
⊆
x0
Known
UnionI
UnionI
:
∀ x0 x1 x2 .
x1
∈
x2
⟶
x2
∈
x0
⟶
x1
∈
prim3
x0
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Known
Union_ordsucc_eq
Union_ordsucc_eq
:
∀ x0 .
nat_p
x0
⟶
prim3
(
ordsucc
x0
)
=
x0
Theorem
In_0_3
In_0_3
:
0
∈
3
(proof)
Theorem
In_1_3
In_1_3
:
1
∈
3
(proof)
Theorem
In_2_3
In_2_3
:
2
∈
3
(proof)
Theorem
In_0_4
In_0_4
:
0
∈
4
(proof)
Theorem
In_1_4
In_1_4
:
1
∈
4
(proof)
Theorem
In_2_4
In_2_4
:
2
∈
4
(proof)
Theorem
In_3_4
In_3_4
:
3
∈
4
(proof)
Theorem
In_0_5
In_0_5
:
0
∈
5
(proof)
Theorem
In_1_5
In_1_5
:
1
∈
5
(proof)
Theorem
In_2_5
In_2_5
:
2
∈
5
(proof)
Theorem
In_3_5
In_3_5
:
3
∈
5
(proof)
Theorem
In_4_5
In_4_5
:
4
∈
5
(proof)
Theorem
In_0_6
In_0_6
:
0
∈
6
(proof)
Theorem
In_1_6
In_1_6
:
1
∈
6
(proof)
Theorem
In_2_6
In_2_6
:
2
∈
6
(proof)
Theorem
In_3_6
In_3_6
:
3
∈
6
(proof)
Theorem
In_4_6
In_4_6
:
4
∈
6
(proof)
Theorem
In_5_6
In_5_6
:
5
∈
6
(proof)
Theorem
In_0_7
In_0_7
:
0
∈
7
(proof)
Theorem
In_1_7
In_1_7
:
1
∈
7
(proof)
Theorem
In_2_7
In_2_7
:
2
∈
7
(proof)
Theorem
In_3_7
In_3_7
:
3
∈
7
(proof)
Theorem
In_4_7
In_4_7
:
4
∈
7
(proof)
Theorem
In_5_7
In_5_7
:
5
∈
7
(proof)
Theorem
In_6_7
In_6_7
:
6
∈
7
(proof)
Theorem
In_0_8
In_0_8
:
0
∈
8
(proof)
Theorem
In_1_8
In_1_8
:
1
∈
8
(proof)
Theorem
In_2_8
In_2_8
:
2
∈
8
(proof)
Theorem
In_3_8
In_3_8
:
3
∈
8
(proof)
Theorem
In_4_8
In_4_8
:
4
∈
8
(proof)
Theorem
In_5_8
In_5_8
:
5
∈
8
(proof)
Theorem
In_6_8
In_6_8
:
6
∈
8
(proof)
Theorem
In_7_8
In_7_8
:
7
∈
8
(proof)
Theorem
In_0_9
In_0_9
:
0
∈
9
(proof)
Theorem
In_1_9
In_1_9
:
1
∈
9
(proof)
Theorem
In_2_9
In_2_9
:
2
∈
9
(proof)
Theorem
In_3_9
In_3_9
:
3
∈
9
(proof)
Theorem
In_4_9
In_4_9
:
4
∈
9
(proof)
Theorem
In_5_9
In_5_9
:
5
∈
9
(proof)
Theorem
In_6_9
In_6_9
:
6
∈
9
(proof)
Theorem
In_7_9
In_7_9
:
7
∈
9
(proof)
Theorem
In_8_9
In_8_9
:
8
∈
9
(proof)
Param
In_rec_i
In_rec_i
:
(
ι
→
(
ι
→
ι
) →
ι
) →
ι
→
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Definition
nat_primrec
nat_primrec
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
In_rec_i
(
λ x2 .
λ x3 :
ι → ι
.
If_i
(
prim3
x2
∈
x2
)
(
x1
(
prim3
x2
)
(
x3
(
prim3
x2
)
)
)
x0
)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Theorem
nat_primrec_r
nat_primrec_r
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
∀ x3 x4 :
ι → ι
.
(
∀ x5 .
x5
∈
x2
⟶
x3
x5
=
x4
x5
)
⟶
If_i
(
prim3
x2
∈
x2
)
(
x1
(
prim3
x2
)
(
x3
(
prim3
x2
)
)
)
x0
=
If_i
(
prim3
x2
∈
x2
)
(
x1
(
prim3
x2
)
(
x4
(
prim3
x2
)
)
)
x0
(proof)
Known
In_rec_i_eq
In_rec_i_eq
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
(
∀ x1 .
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_i
x0
x1
=
x0
x1
(
In_rec_i
x0
)
Theorem
nat_primrec_0
nat_primrec_0
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
nat_primrec
x0
x1
0
=
x0
(proof)
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Theorem
nat_primrec_S
nat_primrec_S
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
nat_p
x2
⟶
nat_primrec
x0
x1
(
ordsucc
x2
)
=
x1
x2
(
nat_primrec
x0
x1
x2
)
(proof)
Definition
add_nat
add_nat
:=
λ x0 .
nat_primrec
x0
(
λ x1 .
ordsucc
)
Theorem
add_nat_0R
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
(proof)
Theorem
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
(proof)
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Theorem
add_nat_p
add_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
add_nat
x0
x1
)
(proof)
Theorem
add_nat_asso
add_nat_asso
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 .
nat_p
x2
⟶
add_nat
(
add_nat
x0
x1
)
x2
=
add_nat
x0
(
add_nat
x1
x2
)
(proof)
Theorem
add_nat_0L
add_nat_0L
:
∀ x0 .
nat_p
x0
⟶
add_nat
0
x0
=
x0
(proof)
Theorem
add_nat_SL
add_nat_SL
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
add_nat
(
ordsucc
x0
)
x1
=
ordsucc
(
add_nat
x0
x1
)
(proof)
Theorem
add_nat_com
add_nat_com
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
add_nat
x0
x1
=
add_nat
x1
x0
(proof)
Definition
mul_nat
mul_nat
:=
λ x0 .
nat_primrec
0
(
λ x1 .
add_nat
x0
)
Theorem
mul_nat_0R
mul_nat_0R
:
∀ x0 .
mul_nat
x0
0
=
0
(proof)
Theorem
mul_nat_SR
mul_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
mul_nat
x0
(
ordsucc
x1
)
=
add_nat
x0
(
mul_nat
x0
x1
)
(proof)
Known
nat_0
nat_0
:
nat_p
0
Theorem
mul_nat_p
mul_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
mul_nat
x0
x1
)
(proof)
Theorem
mul_nat_0L
mul_nat_0L
:
∀ x0 .
nat_p
x0
⟶
mul_nat
0
x0
=
0
(proof)
Theorem
mul_nat_SL
mul_nat_SL
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
mul_nat
(
ordsucc
x0
)
x1
=
add_nat
(
mul_nat
x0
x1
)
x1
(proof)
Theorem
mul_nat_com
mul_nat_com
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
mul_nat
x0
x1
=
mul_nat
x1
x0
(proof)
Theorem
mul_add_nat_distrL
mul_add_nat_distrL
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 .
nat_p
x2
⟶
mul_nat
x0
(
add_nat
x1
x2
)
=
add_nat
(
mul_nat
x0
x1
)
(
mul_nat
x0
x2
)
(proof)
Theorem
mul_add_nat_distrR
mul_add_nat_distrR
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 .
nat_p
x2
⟶
mul_nat
(
add_nat
x0
x1
)
x2
=
add_nat
(
mul_nat
x0
x2
)
(
mul_nat
x1
x2
)
(proof)
Theorem
mul_nat_asso
mul_nat_asso
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 .
nat_p
x2
⟶
mul_nat
(
mul_nat
x0
x1
)
x2
=
mul_nat
x0
(
mul_nat
x1
x2
)
(proof)
Theorem
add_nat_1_1_2
add_nat_1_1_2
:
add_nat
1
1
=
2
(proof)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
nat_ordsucc_in_ordsucc
nat_ordsucc_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
∈
ordsucc
x0
Known
ordsucc_inj
ordsucc_inj
:
∀ x0 x1 .
ordsucc
x0
=
ordsucc
x1
⟶
x0
=
x1
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
PigeonHole_nat
PigeonHole_nat
:
∀ x0 .
nat_p
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
ordsucc
x0
⟶
x1
x2
∈
x0
)
⟶
not
(
∀ x2 .
x2
∈
ordsucc
x0
⟶
∀ x3 .
x3
∈
ordsucc
x0
⟶
x1
x2
=
x1
x3
⟶
x2
=
x3
)
(proof)
Definition
bij
bij
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Theorem
PigeonHole_nat_bij
PigeonHole_nat_bij
:
∀ x0 .
nat_p
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
x0
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
=
x1
x3
⟶
x2
=
x3
)
⟶
bij
x0
x0
x1
(proof)