Search for blocks/addresses/...

Proofgold Asset

asset id
70137e7a79110cb136ed1eacbf4c738ba801372c498ddc0317501dd6c58ddd70
asset hash
e4782ef1bc998763af986acbee4f39c670e19aa605e0592172d3e192ebab5ef9
bday / block
1473
tx
0d78c..
preasset
doc published by PrGxv..
Theorem 15e97..eq_sym_i : ∀ x0 x1 . x0 = x1x1 = x0 (proof)
Known 8106d..notI : ∀ x0 : ο . (x0False)not x0
Known notEnotE : ∀ x0 : ο . not x0x0False
Theorem 73fda..neq_sym_i : ∀ x0 x1 . not (x0 = x1)not (x1 = x0) (proof)
Known 61ad0..In_ind : ∀ x0 : ι → ο . (∀ x1 . (∀ x2 . In x2 x1x0 x2)x0 x1)∀ x1 . x0 x1
Known 9d2e6..nIn_I2 : ∀ x0 x1 . (In x0 x1False)nIn x0 x1
Known 24526..nIn_E2 : ∀ x0 x1 . nIn x0 x1In x0 x1False
Theorem e85f6..In_irref : ∀ x0 . nIn x0 x0 (proof)
Theorem 0f73a..In_no2cycle : ∀ x0 x1 . In x0 x1In x1 x0False (proof)
Theorem a0c6c..In_no3cycle : ∀ x0 x1 x2 . In x0 x1In x1 x2In x2 x0False (proof)
Known c5eb1..ordsucc_def : ordsucc = λ x1 . binunion x1 (Sing x1)
Known b0dce..SubqI : ∀ x0 x1 . (∀ x2 . In x2 x0In x2 x1)Subq x0 x1
Known 0ce8c..binunionI1 : ∀ x0 x1 x2 . In x2 x0In x2 (binunion x0 x1)
Theorem 165f2..ordsuccI1 : ∀ x0 . Subq x0 (ordsucc x0) (proof)
Known 367e6..SubqE : ∀ x0 x1 . Subq x0 x1∀ x2 . In x2 x0In x2 x1
Theorem e9b50..ordsuccI1b : ∀ x0 x1 . In x1 x0In x1 (ordsucc x0) (proof)
Known eb8b4..binunionI2 : ∀ x0 x1 x2 . In x2 x1In x2 (binunion x0 x1)
Known 1f15b..SingI : ∀ x0 . In x0 (Sing x0)
Theorem cf025..ordsuccI2 : ∀ x0 . In x0 (ordsucc x0) (proof)
Known f9974..binunionE_cases : ∀ x0 x1 x2 . In x2 (binunion x0 x1)∀ x3 : ο . (In x2 x0x3)(In x2 x1x3)x3
Known dcbd9..orIL : ∀ x0 x1 : ο . x0or x0 x1
Known eca40..orIR : ∀ x0 x1 : ο . x1or x0 x1
Known 9ae18..SingE : ∀ x0 x1 . In x1 (Sing x0)x1 = x0
Theorem 1373d..ordsuccE : ∀ x0 x1 . In x1 (ordsucc x0)or (In x1 x0) (x1 = x0) (proof)
Known 37124..orE : ∀ x0 x1 : ο . or x0 x1∀ x2 : ο . (x0x2)(x1x2)x2
Theorem b4776..ordsuccE_impred : ∀ x0 x1 . In x1 (ordsucc x0)∀ x2 : ο . (In x1 x0x2)(x1 = x0x2)x2 (proof)
Known 2901c..EmptyE : ∀ x0 . In x0 0False
Theorem c985e..neq_0_ordsucc : ∀ x0 . not (0 = ordsucc x0) (proof)
Theorem 0610a..neq_ordsucc_0 : ∀ x0 . not (ordsucc x0 = 0) (proof)
Known FalseEFalseE : False∀ x0 : ο . x0
Theorem 74738..ordsucc_inj : ∀ x0 x1 . ordsucc x0 = ordsucc x1x0 = x1 (proof)
Theorem aaf17..ordsucc_inj_contra : ∀ x0 x1 . not (x0 = x1)not (ordsucc x0 = ordsucc x1) (proof)
Theorem 0978b..In_0_1 : In 0 1 (proof)
Theorem 0863e..In_0_2 : In 0 2 (proof)
Theorem 0a117..In_1_2 : In 1 2 (proof)
Theorem e51a8..cases_1 : ∀ x0 . In x0 1∀ x1 : ι → ο . x1 0x1 x0 (proof)
Theorem 3ad28..cases_2 : ∀ x0 . In x0 2∀ x1 : ι → ο . x1 0x1 1x1 x0 (proof)
Theorem 416bd..cases_3 : ∀ x0 . In x0 3∀ x1 : ι → ο . x1 0x1 1x1 2x1 x0 (proof)
Theorem 8b3d1..cases_4 : ∀ x0 . In x0 4∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 x0 (proof)
Theorem 2d26c..cases_5 : ∀ x0 . In x0 5∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 4x1 x0 (proof)
Theorem a05e0..cases_6 : ∀ x0 . In x0 6∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 4x1 5x1 x0 (proof)
Theorem 4d7f5..cases_7 : ∀ x0 . In x0 7∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 4x1 5x1 6x1 x0 (proof)
Theorem 8d7d3..cases_8 : ∀ x0 . In x0 8∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 4x1 5x1 6x1 7x1 x0 (proof)
Theorem 1414e..cases_9 : ∀ x0 . In x0 9∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 4x1 5x1 6x1 7x1 8x1 x0 (proof)
Theorem e3ec9..neq_0_1 : not (0 = 1) (proof)
Theorem a871f..neq_1_0 : not (1 = 0) (proof)
Theorem f043b..neq_0_2 : not (0 = 2) (proof)
Theorem db5d7..neq_2_0 : not (2 = 0) (proof)
Theorem 69ac1..neq_1_2 : not (1 = 2) (proof)
Theorem 56778..neq_2_1 : not (2 = 1) (proof)
Known b41a2..Subq_Empty : ∀ x0 . Subq 0 x0
Theorem 25820..Subq_0_0 : Subq 0 0 (proof)
Theorem baaef..Subq_0_1 : Subq 0 1 (proof)
Theorem 22aa5..Subq_0_2 : Subq 0 2 (proof)
Known 6696a..Subq_ref : ∀ x0 . Subq x0 x0
Theorem a95bd..Subq_1_1 : Subq 1 1 (proof)
Theorem a21f3..Subq_1_2 : Subq 1 2 (proof)
Theorem a9130..Subq_2_2 : Subq 2 2 (proof)
Theorem 830d8..Subq_1_Sing0 : Subq 1 (Sing 0) (proof)
Theorem cdfbd..Subq_Sing0_1 : Subq (Sing 0) 1 (proof)
Known b3824..set_ext : ∀ x0 x1 . Subq x0 x1Subq x1 x0x0 = x1
Theorem 5c344..eq_1_Sing0 : 1 = Sing 0 (proof)
Known 69fe1..UPairI1 : ∀ x0 x1 . In x0 (UPair x0 x1)
Known 7477d..UPairI2 : ∀ x0 x1 . In x1 (UPair x0 x1)
Theorem 8fa42..Subq_2_UPair01 : Subq 2 (UPair 0 1) (proof)
Known 7aad1..UPairE_cases : ∀ x0 x1 x2 . In x0 (UPair x1 x2)∀ x3 : ο . (x0 = x1x3)(x0 = x2x3)x3
Theorem bdcc4..Subq_UPair01_2 : Subq (UPair 0 1) 2 (proof)
Theorem fd6b1..eq_2_UPair01 : 2 = UPair 0 1 (proof)
Known de33e..nat_p_def : nat_p = λ x1 . ∀ x2 : ι → ο . x2 0(∀ x3 . x2 x3x2 (ordsucc x3))x2 x1
Theorem 08405..nat_0 : nat_p 0 (proof)
Theorem 21479..nat_ordsucc : ∀ x0 . nat_p x0nat_p (ordsucc x0) (proof)
Theorem c7c31..nat_1 : nat_p 1 (proof)
Theorem 36841..nat_2 : nat_p 2 (proof)
Theorem 7bd16..nat_0_in_ordsucc : ∀ x0 . nat_p x0In 0 (ordsucc x0) (proof)
Theorem 840d1..nat_ordsucc_in_ordsucc : ∀ x0 . nat_p x0∀ x1 . In x1 x0In (ordsucc x1) (ordsucc x0) (proof)
Known eb789..andER : ∀ x0 x1 : ο . and x0 x1x1
Known andEandE : ∀ x0 x1 : ο . and x0 x1∀ x2 : ο . (x0x1x2)x2
Known 7c02f..andI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem fed08..nat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1 (proof)
Theorem c7246..nat_inv : ∀ x0 . nat_p x0or (x0 = 0) (∀ x1 : ο . (∀ x2 . and (nat_p x2) (x0 = ordsucc x2)x1)x1) (proof)
Theorem 92870..nat_complete_ind : ∀ x0 : ι → ο . (∀ x1 . nat_p x1(∀ x2 . In x2 x1x0 x2)x0 x1)∀ x1 . nat_p x1x0 x1 (proof)
Theorem b0a90..nat_p_trans : ∀ x0 . nat_p x0∀ x1 . In x1 x0nat_p x1 (proof)
Known 2ad64..Subq_tra : ∀ x0 x1 x2 . Subq x0 x1Subq x1 x2Subq x0 x2
Theorem 80da5..nat_trans : ∀ x0 . nat_p x0∀ x1 . In x1 x0Subq x1 x0 (proof)
Known 5f38d..TransSet_def : TransSet = λ x1 . ∀ x2 . In x2 x1Subq x2 x1
Theorem 1358f..nat_TransSet : ∀ x0 . nat_p x0TransSet x0 (proof)
Known f40a4..ordinal_def : ordinal = λ x1 . and (TransSet x1) (∀ x2 . In x2 x1TransSet x2)
Theorem 08dfe..nat_p_ordinal : ∀ x0 . nat_p x0ordinal x0 (proof)
Theorem 8cf6a..nat_ordsucc_trans : ∀ x0 . nat_p x0∀ x1 . In x1 (ordsucc x0)Subq x1 x0 (proof)
Known 535f2..set_ext_2 : ∀ x0 x1 . (∀ x2 . In x2 x0In x2 x1)(∀ x2 . In x2 x1In x2 x0)x0 = x1
Known 2109a..UnionE2 : ∀ x0 x1 . In x1 (Union x0)∀ x2 : ο . (∀ x3 . In x1 x3In x3 x0x2)x2
Known a4d26..UnionI : ∀ x0 x1 x2 . In x1 x2In x2 x0In x1 (Union x0)
Theorem 48ae5..Union_ordsucc_eq : ∀ x0 . nat_p x0Union (ordsucc x0) = x0 (proof)
Theorem 82574..In_0_3 : In 0 3 (proof)
Theorem f0f3e..In_1_3 : In 1 3 (proof)
Theorem b5e95..In_2_3 : In 2 3 (proof)
Theorem 71a8d..In_0_4 : In 0 4 (proof)
Theorem efe66..In_1_4 : In 1 4 (proof)
Theorem 884f0..In_2_4 : In 2 4 (proof)
Theorem d9ca3..In_3_4 : In 3 4 (proof)
Theorem 5ec9a..In_0_5 : In 0 5 (proof)
Theorem 53692..In_1_5 : In 1 5 (proof)
Theorem 7f632..In_2_5 : In 2 5 (proof)
Theorem c3428..In_3_5 : In 3 5 (proof)
Theorem 55f57..In_4_5 : In 4 5 (proof)
Theorem 0f549..In_0_6 : In 0 6 (proof)
Theorem e5e7b..In_1_6 : In 1 6 (proof)
Theorem c6359..In_2_6 : In 2 6 (proof)
Theorem d5bd4..In_3_6 : In 3 6 (proof)
Theorem 99a7f..In_4_6 : In 4 6 (proof)
Theorem ad142..In_5_6 : In 5 6 (proof)
Theorem 6516d..In_0_7 : In 0 7 (proof)
Theorem ed9ed..In_1_7 : In 1 7 (proof)
Theorem e6c7c..In_2_7 : In 2 7 (proof)
Theorem dc43c..In_3_7 : In 3 7 (proof)
Theorem fb74e..In_4_7 : In 4 7 (proof)
Theorem 59629..In_5_7 : In 5 7 (proof)
Theorem 14a1c..In_6_7 : In 6 7 (proof)
Theorem 57d5b..In_0_8 : In 0 8 (proof)
Theorem 4c0a3..In_1_8 : In 1 8 (proof)
Theorem b8348..In_2_8 : In 2 8 (proof)
Theorem ace10..In_3_8 : In 3 8 (proof)
Theorem e08a8..In_4_8 : In 4 8 (proof)
Theorem 9ad9e..In_5_8 : In 5 8 (proof)
Theorem e821f..In_6_8 : In 6 8 (proof)
Theorem 879be..In_7_8 : In 7 8 (proof)
Theorem fda50..In_0_9 : In 0 9 (proof)
Theorem 9744a..In_1_9 : In 1 9 (proof)
Theorem 2df93..In_2_9 : In 2 9 (proof)
Theorem c585f..In_3_9 : In 3 9 (proof)
Theorem 8ee2c..In_4_9 : In 4 9 (proof)
Theorem e48d3..In_5_9 : In 5 9 (proof)
Theorem 35438..In_6_9 : In 6 9 (proof)
Theorem 3f605..In_7_9 : In 7 9 (proof)
Theorem dab47..In_8_9 : In 8 9 (proof)
Known 3cfc3..nIn_Empty : ∀ x0 . nIn x0 0
Theorem 9dcaa..nIn_0_0 : nIn 0 0 (proof)
Theorem 18175..nIn_1_0 : nIn 1 0 (proof)
Theorem 7a610..nIn_2_0 : nIn 2 0 (proof)
Theorem 6e7db..nIn_1_1 : nIn 1 1 (proof)
Theorem 0ba24..nIn_2_1 : nIn 2 1 (proof)
Theorem df31d..nIn_2_2 : nIn 2 2 (proof)
Known 557c1..nSubq_def : nSubq = λ x1 x2 . not (Subq x1 x2)
Theorem 16ddf..nSubq_1_0 : nSubq 1 0 (proof)
Theorem 23c6f..nSubq_2_0 : nSubq 2 0 (proof)
Theorem e21f2..nSubq_2_1 : nSubq 2 1 (proof)