Search for blocks/addresses/...
Proofgold Asset
asset id
6ac48d3154e1bb638ea45a2e7886f49156204005b7d2be1b25168d1df1e6b68c
asset hash
e53de83e9c606b343b186c7a48d86ec33ce5a1cecf5fef0c55ae44f3e7448795
bday / block
31247
tx
26bcf..
preasset
doc published by
Pr4zB..
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Param
u4
:
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u5
:=
ordsucc
u4
Param
nat_p
nat_p
:
ι
→
ο
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
nat_0
nat_0
:
nat_p
0
Known
add_nat_0R
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
Theorem
893fe..
:
add_nat
u4
u1
=
u5
(proof)
Definition
u6
:=
ordsucc
u5
Theorem
561b1..
:
add_nat
u5
u1
=
u6
(proof)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
nat_inv
nat_inv
:
∀ x0 .
nat_p
x0
⟶
or
(
x0
=
0
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
nat_p
x2
)
(
x0
=
ordsucc
x2
)
⟶
x1
)
⟶
x1
)
Known
nat_p_trans
nat_p_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
nat_p
x1
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
nat_trans
nat_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Theorem
80d07..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
=
0
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
x0
)
(
x1
=
ordsucc
x3
)
⟶
x2
)
⟶
x2
)
(proof)
Definition
bij
bij
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Definition
equip
equip
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
bij
x0
x1
x3
⟶
x2
)
⟶
x2
Param
ordinal
ordinal
:
ι
→
ο
Definition
inj
inj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Known
least_ordinal_ex
least_ordinal_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
and
(
ordinal
x2
)
(
x0
x2
)
⟶
x1
)
⟶
x1
)
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
and
(
ordinal
x2
)
(
x0
x2
)
)
(
∀ x3 .
x3
∈
x2
⟶
not
(
x0
x3
)
)
⟶
x1
)
⟶
x1
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
9c223..
equip_ordsucc_remove1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
equip
x0
(
ordsucc
x1
)
⟶
equip
(
setminus
x0
(
Sing
x2
)
)
x1
Known
setminusE1
setminusE1
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
x2
∈
x0
Param
nat_primrec
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Known
nat_primrec_0
nat_primrec_0
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
nat_primrec
x0
x1
0
=
x0
Known
nat_primrec_S
nat_primrec_S
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
nat_p
x2
⟶
nat_primrec
x0
x1
(
ordsucc
x2
)
=
x1
x2
(
nat_primrec
x0
x1
x2
)
Known
setminusE2
setminusE2
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
nIn
x2
x1
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
ordinal_trichotomy_or_impred
ordinal_trichotomy_or_impred
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 : ο .
(
x0
∈
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
x1
∈
x0
⟶
x2
)
⟶
x2
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
In_no2cycle
In_no2cycle
:
∀ x0 x1 .
x0
∈
x1
⟶
x1
∈
x0
⟶
False
Known
nat_ordsucc_in_ordsucc
nat_ordsucc_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
∈
ordsucc
x0
Theorem
e802a..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
equip
x0
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
ordinal
x2
)
⟶
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
and
(
inj
x0
x1
x3
)
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x4
⟶
x3
x5
∈
x3
x4
)
⟶
x2
)
⟶
x2
(proof)
Definition
atleastp
atleastp
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
inj
x0
x1
x3
⟶
x2
)
⟶
x2
Known
d2050..
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
=
x1
x3
⟶
x2
=
x3
)
⟶
equip
x0
(
prim5
x0
x1
)
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Theorem
9a4b0..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
atleastp
x0
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
ordinal
x2
)
⟶
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
and
(
inj
x0
x1
x3
)
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x4
⟶
x3
x5
∈
x3
x4
)
⟶
x2
)
⟶
x2
(proof)
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Known
nat_3
nat_3
:
nat_p
3
Known
In_0_3
In_0_3
:
0
∈
3
Known
In_1_3
In_1_3
:
1
∈
3
Known
In_2_3
In_2_3
:
2
∈
3
Known
In_0_1
In_0_1
:
0
∈
1
Known
In_1_2
In_1_2
:
1
∈
2
Theorem
865bf..
:
∀ x0 .
atleastp
u3
x0
⟶
(
∀ x1 .
x1
∈
x0
⟶
ordinal
x1
)
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
∈
x3
⟶
x3
∈
x4
⟶
x1
)
⟶
x1
(proof)
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Theorem
2ec5a..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
atleastp
(
ordsucc
x0
)
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
ordinal
x2
)
⟶
∀ x2 : ο .
(
∀ x3 x4 .
equip
x0
x3
⟶
x4
∈
x1
⟶
x3
⊆
x1
⟶
x3
⊆
x4
⟶
x2
)
⟶
x2
(proof)
Param
u17
:
ι
Definition
u18
:=
ordsucc
u17
Known
c5b55..
:
0
∈
u17
Theorem
a7790..
:
0
∈
u18
(proof)
Known
f6e42..
:
u1
∈
u17
Theorem
b8ca4..
:
u1
∈
u18
(proof)
Known
9502b..
:
u2
∈
u17
Theorem
a878b..
:
u2
∈
u18
(proof)
Known
35c0a..
:
u3
∈
u17
Theorem
d07d6..
:
u3
∈
u18
(proof)
Known
793dd..
:
u4
∈
u17
Theorem
6d81a..
:
u4
∈
u18
(proof)
Known
79c48..
:
u5
∈
u17
Theorem
e36c4..
:
u5
∈
u18
(proof)
Known
b3205..
:
u6
∈
u17
Theorem
79cb7..
:
u6
∈
u18
(proof)
Param
u7
:
ι
Known
51ef0..
:
u7
∈
u17
Theorem
56aca..
:
u7
∈
u18
(proof)
Param
u8
:
ι
Known
6a4e9..
:
u8
∈
u17
Theorem
fbe02..
:
u8
∈
u18
(proof)
Param
u9
:
ι
Known
fd1a6..
:
u9
∈
u17
Theorem
1a5f0..
:
u9
∈
u18
(proof)
Param
u10
:
ι
Known
e886d..
:
u10
∈
u17
Theorem
f5af9..
:
u10
∈
u18
(proof)
Param
u11
:
ι
Known
e57ea..
:
u11
∈
u17
Theorem
c2b10..
:
u11
∈
u18
(proof)
Param
u12
:
ι
Known
a1a10..
:
u12
∈
u17
Theorem
6591b..
:
u12
∈
u18
(proof)
Param
u13
:
ι
Known
7315d..
:
u13
∈
u17
Theorem
c4f20..
:
u13
∈
u18
(proof)
Param
u14
:
ι
Known
35e01..
:
u14
∈
u17
Theorem
755d2..
:
u14
∈
u18
(proof)
Param
u15
:
ι
Known
31b8d..
:
u15
∈
u17
Theorem
0f93a..
:
u15
∈
u18
(proof)
Param
u16
:
ι
Known
dfaf3..
:
u16
∈
u17
Theorem
7e227..
:
u16
∈
u18
(proof)
Theorem
e0489..
:
u17
∈
u18
(proof)
Definition
u19
:=
ordsucc
u18
Theorem
ee3ac..
:
0
∈
u19
(proof)
Theorem
7d131..
:
u1
∈
u19
(proof)
Theorem
b67e6..
:
u2
∈
u19
(proof)
Theorem
8cb19..
:
u3
∈
u19
(proof)
Theorem
1cffe..
:
u4
∈
u19
(proof)
Theorem
f4c5f..
:
u5
∈
u19
(proof)
Theorem
621e0..
:
u6
∈
u19
(proof)
Theorem
f0487..
:
u7
∈
u19
(proof)
Theorem
4d195..
:
u8
∈
u19
(proof)
Theorem
684da..
:
u9
∈
u19
(proof)
Theorem
142ec..
:
u10
∈
u19
(proof)
Theorem
58234..
:
u11
∈
u19
(proof)
Theorem
4f2ac..
:
u12
∈
u19
(proof)
Theorem
74754..
:
u13
∈
u19
(proof)
Theorem
82290..
:
u14
∈
u19
(proof)
Theorem
f77c1..
:
u15
∈
u19
(proof)
Theorem
8d5b9..
:
u16
∈
u19
(proof)
Theorem
a6826..
:
u17
∈
u19
(proof)
Theorem
25029..
:
u18
∈
u19
(proof)
Definition
u20
:=
ordsucc
u19
Theorem
4d7d5..
:
0
∈
u20
(proof)
Theorem
8154f..
:
u1
∈
u20
(proof)
Theorem
2a239..
:
u2
∈
u20
(proof)
Theorem
112c4..
:
u3
∈
u20
(proof)
Theorem
ae167..
:
u4
∈
u20
(proof)
Theorem
d15f4..
:
u5
∈
u20
(proof)
Theorem
6a68d..
:
u6
∈
u20
(proof)
Theorem
c3da7..
:
u7
∈
u20
(proof)
Theorem
67123..
:
u8
∈
u20
(proof)
Theorem
63ab7..
:
u9
∈
u20
(proof)
Theorem
1c8f4..
:
u10
∈
u20
(proof)
Theorem
96d5f..
:
u11
∈
u20
(proof)
Theorem
f3e75..
:
u12
∈
u20
(proof)
Theorem
b5fe0..
:
u13
∈
u20
(proof)
Theorem
985c5..
:
u14
∈
u20
(proof)
Theorem
2a2c2..
:
u15
∈
u20
(proof)
Theorem
def07..
:
u16
∈
u20
(proof)
Theorem
de57f..
:
u17
∈
u20
(proof)
Theorem
94188..
:
u18
∈
u20
(proof)
Theorem
9ea5b..
:
u19
∈
u20
(proof)
Definition
u21
:=
ordsucc
u20
Theorem
179f3..
:
0
∈
u21
(proof)
Theorem
07fdb..
:
u1
∈
u21
(proof)
Theorem
c25ea..
:
u2
∈
u21
(proof)
Theorem
0750b..
:
u3
∈
u21
(proof)
Theorem
701a9..
:
u4
∈
u21
(proof)
Theorem
0dc69..
:
u5
∈
u21
(proof)
Theorem
1d1d3..
:
u6
∈
u21
(proof)
Theorem
0b77c..
:
u7
∈
u21
(proof)
Theorem
5fc29..
:
u8
∈
u21
(proof)
Theorem
4b046..
:
u9
∈
u21
(proof)
Theorem
46da3..
:
u10
∈
u21
(proof)
Theorem
3ad1f..
:
u11
∈
u21
(proof)
Theorem
07061..
:
u12
∈
u21
(proof)
Theorem
d16a4..
:
u13
∈
u21
(proof)
Theorem
a6788..
:
u14
∈
u21
(proof)
Theorem
ce294..
:
u15
∈
u21
(proof)
Theorem
20f4b..
:
u16
∈
u21
(proof)
Theorem
d5f90..
:
u17
∈
u21
(proof)
Theorem
08993..
:
u18
∈
u21
(proof)
Theorem
b8dfd..
:
u19
∈
u21
(proof)
Theorem
c955e..
:
u20
∈
u21
(proof)
Theorem
edc13..
:
u18
=
u19
⟶
∀ x0 : ο .
x0
(proof)
Theorem
42954..
:
u17
=
u20
⟶
∀ x0 : ο .
x0
(proof)
Known
nat_17
nat_17
:
nat_p
u17
Theorem
2d2af..
:
u12
⊆
u17
(proof)
Known
2669c..
:
nat_p
u20
Theorem
2d95b..
:
u17
⊆
u20
(proof)
Known
e8a0a..
:
nat_p
u21
Theorem
c1d56..
:
u17
⊆
u21
(proof)
Param
ap
ap
:
ι
→
ι
→
ι
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Definition
e7a80..
:=
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
ap
(
lam
22
(
λ x23 .
If_i
(
x23
=
0
)
x1
(
If_i
(
x23
=
1
)
x23
(
If_i
(
x23
=
2
)
x3
(
If_i
(
x23
=
3
)
x4
(
If_i
(
x23
=
4
)
x5
(
If_i
(
x23
=
5
)
x6
(
If_i
(
x23
=
6
)
x7
(
If_i
(
x23
=
7
)
x8
(
If_i
(
x23
=
8
)
x9
(
If_i
(
x23
=
9
)
x10
(
If_i
(
x23
=
10
)
x11
(
If_i
(
x23
=
11
)
x12
(
If_i
(
x23
=
12
)
x13
(
If_i
(
x23
=
13
)
x14
(
If_i
(
x23
=
14
)
x15
(
If_i
(
x23
=
15
)
x16
(
If_i
(
x23
=
16
)
x17
(
If_i
(
x23
=
17
)
x18
(
If_i
(
x23
=
18
)
x19
(
If_i
(
x23
=
19
)
x20
(
If_i
(
x23
=
20
)
x21
x22
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
x0
Definition
00974..
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x1 :
(
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→ ο
.
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x2
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x3
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x4
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x5
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x6
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x7
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x8
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x9
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x10
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x11
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x12
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x13
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x14
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x15
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x16
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x17
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x18
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x19
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x20
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x21
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x22
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
x23
)
⟶
x1
x0
Definition
94591..
:=
λ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x2 x3 .
x0
(
x1
x2
x2
x2
x3
x3
x3
x3
x2
x3
x3
x2
x3
x3
x3
x3
x2
x3
x2
x3
x3
x3
x3
)
(
x1
x2
x2
x3
x2
x3
x3
x2
x3
x3
x3
x3
x2
x2
x3
x3
x3
x3
x3
x3
x3
x3
x2
)
(
x1
x2
x3
x2
x2
x3
x2
x3
x3
x2
x3
x3
x3
x3
x3
x2
x3
x3
x3
x3
x3
x3
x2
)
(
x1
x3
x2
x2
x2
x2
x3
x3
x3
x3
x2
x3
x3
x3
x2
x3
x3
x3
x2
x3
x3
x3
x3
)
(
x1
x3
x3
x3
x2
x2
x2
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x3
x3
x2
x3
x3
x3
)
(
x1
x3
x3
x2
x3
x2
x2
x3
x2
x3
x3
x3
x2
x2
x3
x3
x3
x3
x3
x3
x3
x2
x3
)
(
x1
x3
x2
x3
x3
x2
x3
x2
x2
x2
x3
x3
x3
x3
x3
x2
x3
x3
x3
x3
x3
x2
x3
)
(
x1
x2
x3
x3
x3
x3
x2
x2
x2
x3
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x3
x3
x3
)
(
x1
x3
x3
x2
x3
x3
x3
x2
x3
x2
x3
x3
x2
x2
x2
x3
x3
x3
x3
x2
x3
x3
x3
)
(
x1
x3
x3
x3
x2
x3
x3
x3
x2
x3
x2
x2
x3
x2
x3
x3
x2
x3
x3
x3
x3
x2
x3
)
(
x1
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x2
x3
x3
x2
x2
x3
x3
x3
x3
x3
x3
x3
)
(
x1
x3
x2
x3
x3
x3
x2
x3
x3
x2
x3
x3
x2
x3
x3
x2
x2
x3
x2
x3
x3
x3
x3
)
(
x1
x3
x2
x3
x3
x3
x2
x3
x3
x2
x2
x3
x3
x2
x3
x3
x3
x2
x3
x3
x2
x3
x3
)
(
x1
x3
x3
x3
x2
x3
x3
x3
x2
x2
x3
x2
x3
x3
x2
x3
x3
x2
x3
x3
x2
x3
x3
)
(
x1
x3
x3
x2
x3
x3
x3
x2
x3
x3
x3
x2
x2
x3
x3
x2
x3
x2
x3
x3
x2
x3
x3
)
(
x1
x2
x3
x3
x3
x2
x3
x3
x3
x3
x2
x3
x2
x3
x3
x3
x2
x2
x3
x3
x2
x3
x3
)
(
x1
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x2
x2
x2
x2
x2
x2
x3
x3
x3
x2
)
(
x1
x2
x3
x3
x2
x3
x3
x3
x3
x3
x3
x3
x2
x3
x3
x3
x3
x2
x2
x2
x3
x2
x3
)
(
x1
x3
x3
x3
x3
x2
x3
x3
x2
x2
x3
x3
x3
x3
x3
x3
x3
x3
x2
x2
x2
x3
x2
)
(
x1
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x2
x2
x2
x2
x3
x3
x2
x2
x2
x3
)
(
x1
x3
x3
x3
x3
x3
x2
x2
x3
x3
x2
x3
x3
x3
x3
x3
x3
x3
x2
x3
x2
x2
x2
)
(
x1
x3
x2
x2
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x3
x2
x3
x2
x3
x2
x2
)
Param
u22
:
ι
Definition
9043a..
:=
λ x0 x1 .
x0
∈
u22
⟶
x1
∈
u22
⟶
94591..
(
e7a80..
x0
)
(
e7a80..
x1
)
=
λ x3 x4 .
x3