Search for blocks/addresses/...
Proofgold Asset
asset id
e57be799404e98830734ba3f4cea75a72838b9df489e091d78a5446970902301
asset hash
d85e2f5a69da5c4bc7b952a77213448dc3c1be04d80ed2f4585762d8d51af1e6
bday / block
4950
tx
1ada3..
preasset
doc published by
Pr6Pc..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
explicit_Field_minus
explicit_Field_minus
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
Param
ReplSep2
ReplSep2
:
ι
→
(
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
CT2
ι
Param
True
True
:
ο
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Definition
False
False
:=
∀ x0 : ο .
x0
Theorem
801dc..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x3
x7
x8
∈
x0
)
⟶
x1
∈
x0
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x7
x8
∈
x0
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x4
x7
(
x4
x8
x9
)
=
x4
(
x4
x7
x8
)
x9
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x7
x8
=
x4
x8
x7
)
⟶
x2
∈
x0
⟶
(
∀ x7 .
x7
∈
x0
⟶
(
x7
=
x1
⟶
∀ x8 : ο .
x8
)
⟶
∀ x8 : ο .
(
∀ x9 .
and
(
x9
∈
x0
)
(
x4
x7
x9
=
x2
)
⟶
x8
)
⟶
x8
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x4
x7
(
x3
x8
x9
)
=
x3
(
x4
x7
x8
)
(
x4
x7
x9
)
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x7
∈
x0
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x4
(
x3
x7
x8
)
x9
=
x3
(
x4
x7
x9
)
(
x4
x8
x9
)
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
(
x3
x7
x8
)
=
x3
(
explicit_Field_minus
x0
x1
x2
x3
x4
x7
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
x8
)
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x7
)
x8
=
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
x7
x8
)
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x7
(
explicit_Field_minus
x0
x1
x2
x3
x4
x8
)
=
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
x7
x8
)
)
⟶
(
∀ x7 .
x7
∈
ReplSep2
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
⟶
prim0
(
λ x8 .
and
(
x8
∈
x0
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
x10
∈
x0
)
(
x7
=
x6
x8
x10
)
⟶
x9
)
⟶
x9
)
)
∈
x0
)
⟶
(
∀ x7 .
x7
∈
ReplSep2
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
⟶
prim0
(
λ x8 .
and
(
x8
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x7
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
x8
)
)
∈
x0
)
⟶
(
∀ x7 .
x7
∈
ReplSep2
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
⟶
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x7
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
=
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
⟶
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x7
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
=
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
⟶
x7
=
x8
)
⟶
(
∀ x7 .
x7
∈
ReplSep2
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
⟶
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
x6
(
x3
(
x4
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x7
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x7
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x7
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
)
(
x4
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x7
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
)
)
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
(
∀ x7 .
x7
∈
ReplSep2
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
⟶
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
∀ x15 : ο .
(
∀ x16 .
and
(
x16
∈
x0
)
(
x7
=
x6
x14
x16
)
⟶
x15
)
⟶
x15
)
)
)
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
∀ x15 : ο .
(
∀ x16 .
and
(
x16
∈
x0
)
(
x8
=
x6
x14
x16
)
⟶
x15
)
⟶
x15
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x16 .
and
(
x16
∈
x0
)
(
∀ x17 : ο .
(
∀ x18 .
and
(
x18
∈
x0
)
(
x7
=
x6
x16
x18
)
⟶
x17
)
⟶
x17
)
)
)
x14
)
)
)
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x16 .
and
(
x16
∈
x0
)
(
∀ x17 : ο .
(
∀ x18 .
and
(
x18
∈
x0
)
(
x8
=
x6
x16
x18
)
⟶
x17
)
⟶
x17
)
)
)
x14
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
∀ x15 : ο .
(
∀ x16 .
and
(
x16
∈
x0
)
(
x7
=
x6
x14
x16
)
⟶
x15
)
⟶
x15
)
)
)
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x16 .
and
(
x16
∈
x0
)
(
∀ x17 : ο .
(
∀ x18 .
and
(
x18
∈
x0
)
(
x8
=
x6
x16
x18
)
⟶
x17
)
⟶
x17
)
)
)
x14
)
)
)
)
(
x4
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x16 .
and
(
x16
∈
x0
)
(
∀ x17 : ο .
(
∀ x18 .
and
(
x18
∈
x0
)
(
x7
=
x6
x16
x18
)
⟶
x17
)
⟶
x17
)
)
)
x14
)
)
)
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
∀ x15 : ο .
(
∀ x16 .
and
(
x16
∈
x0
)
(
x8
=
x6
x14
x16
)
⟶
x15
)
⟶
x15
)
)
)
)
)
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
=
x3
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x7
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x7
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
)
)
⟶
(
∀ x7 .
x7
∈
ReplSep2
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
⟶
∀ x8 .
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
⟶
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x7
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
∀ x15 : ο .
(
∀ x16 .
and
(
x16
∈
x0
)
(
x7
=
x6
x14
x16
)
⟶
x15
)
⟶
x15
)
)
)
x12
)
)
)
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
∀ x15 : ο .
(
∀ x16 .
and
(
x16
∈
x0
)
(
x8
=
x6
x14
x16
)
⟶
x15
)
⟶
x15
)
)
)
x12
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x7
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
∀ x15 : ο .
(
∀ x16 .
and
(
x16
∈
x0
)
(
x8
=
x6
x14
x16
)
⟶
x15
)
⟶
x15
)
)
)
x12
)
)
)
)
(
x4
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x14 .
and
(
x14
∈
x0
)
(
∀ x15 : ο .
(
∀ x16 .
and
(
x16
∈
x0
)
(
x7
=
x6
x14
x16
)
⟶
x15
)
⟶
x15
)
)
)
x12
)
)
)
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
)
)
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x6
(
x3
(
x4
(
prim0
(
λ x16 .
and
(
x16
∈
x0
)
(
∀ x17 : ο .
(
∀ x18 .
and
(
x18
∈
x0
)
(
x7
=
x6
x16
x18
)
⟶
x17
)
⟶
x17
)
)
)
(
prim0
(
λ x16 .
and
(
x16
∈
x0
)
(
∀ x17 : ο .
(
∀ x18 .
and
(
x18
∈
x0
)
(
x8
=
x6
x16
x18
)
⟶
x17
)
⟶
x17
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x16 .
and
(
x16
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x18 .
and
(
x18
∈
x0
)
(
∀ x19 : ο .
(
∀ x20 .
and
(
x20
∈
x0
)
(
x7
=
x6
x18
x20
)
⟶
x19
)
⟶
x19
)
)
)
x16
)
)
)
(
prim0
(
λ x16 .
and
(
x16
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x18 .
and
(
x18
∈
x0
)
(
∀ x19 : ο .
(
∀ x20 .
and
(
x20
∈
x0
)
(
x8
=
x6
x18
x20
)
⟶
x19
)
⟶
x19
)
)
)
x16
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x16 .
and
(
x16
∈
x0
)
(
∀ x17 : ο .
(
∀ x18 .
and
(
x18
∈
x0
)
(
x7
=
x6
x16
x18
)
⟶
x17
)
⟶
x17
)
)
)
(
prim0
(
λ x16 .
and
(
x16
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x18 .
and
(
x18
∈
x0
)
(
∀ x19 : ο .
(
∀ x20 .
and
(
x20
∈
x0
)
(
x8
=
x6
x18
x20
)
⟶
x19
)
⟶
x19
)
)
)
x16
)
)
)
)
(
x4
(
prim0
(
λ x16 .
and
(
x16
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x18 .
and
(
x18
∈
x0
)
(
∀ x19 : ο .
(
∀ x20 .
and
(
x20
∈
x0
)
(
x7
=
x6
x18
x20
)
⟶
x19
)
⟶
x19
)
)
)
x16
)
)
)
(
prim0
(
λ x16 .
and
(
x16
∈
x0
)
(
∀ x17 : ο .
(
∀ x18 .
and
(
x18
∈
x0
)
(
x8
=
x6
x16
x18
)
⟶
x17
)
⟶
x17
)
)
)
)
)
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
=
x3
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x7
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x7
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x6
x7
x8
∈
ReplSep2
x0
(
λ x9 .
x0
)
(
λ x9 x10 .
True
)
x6
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x6
x7
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
=
x7
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x6
x7
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x6
x7
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
=
x8
)
⟶
x6
x1
x1
∈
ReplSep2
x0
(
λ x7 .
x0
)
(
λ x7 x8 .
True
)
x6
⟶
x6
x2
x1
∈
ReplSep2
x0
(
λ x7 .
x0
)
(
λ x7 x8 .
True
)
x6
⟶
(
∀ x7 .
x7
∈
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x7
)
=
x7
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
x3
(
explicit_Field_minus
x0
x1
x2
x3
x4
x7
)
x7
=
x1
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
x4
x1
x7
=
x1
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x3
(
x4
x7
x7
)
(
x4
x8
x8
)
=
x1
⟶
and
(
x7
=
x1
)
(
x8
=
x1
)
)
⟶
∀ x7 .
x7
∈
ReplSep2
x0
(
λ x8 .
x0
)
(
λ x8 x9 .
True
)
x6
⟶
(
x7
=
x6
x1
x1
⟶
∀ x8 : ο .
x8
)
⟶
∀ x8 : ο .
(
∀ x9 .
and
(
x9
∈
ReplSep2
x0
(
λ x10 .
x0
)
(
λ x10 x11 .
True
)
x6
)
(
x6
(
x3
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x7
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x7
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x7
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
)
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x7
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x7
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
)
)
=
x6
x2
x1
)
⟶
x8
)
⟶
x8
(proof)