Search for blocks/addresses/...
Proofgold Asset
asset id
e6eaf299cbfb3b63833a836ffce0a5f83502e30279707328f27c19e0e8176315
asset hash
5ed3fb724800faf6e4ccde1af4c97c79ac79e631e33de727f36769fb90edfb22
bday / block
19014
tx
88c00..
preasset
doc published by
Pr4zB..
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Theorem
259b1..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
prim5
(
prim5
x0
x1
)
x2
=
{
x2
(
x1
x4
)
|x4 ∈
x0
}
(proof)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
inj
inj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Definition
atleastp
atleastp
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
inj
x0
x1
x3
⟶
x2
)
⟶
x2
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Known
In_0_2
In_0_2
:
0
∈
2
Known
In_1_2
In_1_2
:
1
∈
2
Known
neq_0_1
neq_0_1
:
0
=
1
⟶
∀ x0 : ο .
x0
Theorem
e8716..
:
∀ x0 .
atleastp
u2
x0
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x1
)
⟶
x1
(proof)
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Definition
u7
:=
ordsucc
u6
Definition
u8
:=
ordsucc
u7
Definition
u9
:=
ordsucc
u8
Definition
u10
:=
ordsucc
u9
Definition
u11
:=
ordsucc
u10
Definition
u12
:=
ordsucc
u11
Definition
u13
:=
ordsucc
u12
Definition
u14
:=
ordsucc
u13
Definition
u15
:=
ordsucc
u14
Definition
u16
:=
ordsucc
u15
Theorem
28d49..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
u16
⟶
x1
x2
∈
u16
)
⟶
∀ x2 .
x2
⊆
u16
⟶
prim5
x2
x1
⊆
u16
(proof)
Param
bij
bij
:
ι
→
ι
→
(
ι
→
ι
) →
ο
Definition
equip
equip
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
bij
x0
x1
x3
⟶
x2
)
⟶
x2
Known
bijI
bijI
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
bij
x0
x1
x2
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
43060..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
u16
⟶
∀ x3 .
x3
∈
u16
⟶
x1
x2
=
x1
x3
⟶
x2
=
x3
)
⟶
∀ x2 .
x2
⊆
u16
⟶
equip
x2
(
prim5
x2
x1
)
(proof)
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Theorem
69049..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
u16
⟶
∀ x3 .
x3
∈
u16
⟶
x0
(
x1
x2
)
(
x1
x3
)
⟶
x0
x2
x3
)
⟶
∀ x2 .
x2
⊆
u16
⟶
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
not
(
x0
x3
x4
)
)
⟶
∀ x3 .
x3
∈
prim5
x2
x1
⟶
∀ x4 .
x4
∈
prim5
x2
x1
⟶
not
(
x0
x3
x4
)
(proof)
Param
setminus
setminus
:
ι
→
ι
→
ι
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
In_no2cycle
In_no2cycle
:
∀ x0 x1 .
x0
∈
x1
⟶
x1
∈
x0
⟶
False
Known
f6a92..
:
12
∈
13
Known
equip_tra
equip_tra
:
∀ x0 x1 x2 .
equip
x0
x1
⟶
equip
x1
x2
⟶
equip
x0
x2
Known
In_no3cycle
In_no3cycle
:
∀ x0 x1 x2 .
x0
∈
x1
⟶
x1
∈
x2
⟶
x2
∈
x0
⟶
False
Known
3ef99..
:
13
∈
14
Known
In_no4cycle
In_no4cycle
:
∀ x0 x1 x2 x3 .
x0
∈
x1
⟶
x1
∈
x2
⟶
x2
∈
x3
⟶
x3
∈
x0
⟶
False
Known
2e90c..
:
14
∈
15
Param
nat_p
nat_p
:
ι
→
ο
Param
ordinal
ordinal
:
ι
→
ο
Known
ordinal_trichotomy_or_impred
ordinal_trichotomy_or_impred
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 : ο .
(
x0
∈
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
x1
∈
x0
⟶
x2
)
⟶
x2
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
nat_p_trans
nat_p_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
nat_p
x1
Known
nat_16
nat_16
:
nat_p
16
Known
setminusE1
setminusE1
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
x2
∈
x0
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Theorem
ea47f..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
u16
⟶
x1
x2
∈
u16
)
⟶
(
∀ x2 .
x2
∈
u16
⟶
∀ x3 .
x3
∈
u16
⟶
x1
x2
=
x1
x3
⟶
x2
=
x3
)
⟶
(
∀ x2 .
x2
∈
u16
⟶
∀ x3 .
x3
∈
u16
⟶
x0
(
x1
x2
)
(
x1
x3
)
⟶
x0
x2
x3
)
⟶
(
∀ x2 .
x2
∈
u16
⟶
x1
(
x1
(
x1
(
x1
x2
)
)
)
=
x2
)
⟶
x1
u12
=
u13
⟶
x1
u13
=
u14
⟶
x1
u14
=
u15
⟶
x1
u15
=
u12
⟶
∀ x2 .
x2
⊆
u16
⟶
atleastp
u6
x2
⟶
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
not
(
x0
x3
x4
)
)
⟶
atleastp
u2
(
setminus
x2
u12
)
⟶
∀ x3 : ο .
(
∀ x4 .
x4
⊆
u16
⟶
atleastp
u6
x4
⟶
(
∀ x5 .
x5
∈
x4
⟶
∀ x6 .
x6
∈
x4
⟶
not
(
x0
x5
x6
)
)
⟶
u12
∈
x4
⟶
u13
∈
x4
⟶
x3
)
⟶
(
∀ x4 .
x4
⊆
u16
⟶
atleastp
u6
x4
⟶
(
∀ x5 .
x5
∈
x4
⟶
∀ x6 .
x6
∈
x4
⟶
not
(
x0
x5
x6
)
)
⟶
u12
∈
x4
⟶
u14
∈
x4
⟶
x3
)
⟶
x3
(proof)