Search for blocks/addresses/...
Proofgold Asset
asset id
e7153b6c029de25c58cead22b7e5174bddacddcd2847fcc12ed36f1e66d9e5ff
asset hash
c7887e0ccb2319047d9d5104295c2e247e7391ad373802ff17d4591864746373
bday / block
35131
tx
4298b..
preasset
doc published by
PrPhD..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Theorem
6f396..
:
∀ x0 x1 :
ι →
ι → ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 x5 .
∀ x6 x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι → ι
.
∀ x10 :
ι →
ι →
ι → ι
.
∀ x11 x12 .
∀ x13 x14 :
ι →
ι →
ι → ι
.
∀ x15 :
ι →
ι →
ι →
ι → ι
.
∀ x16 x17 :
ι →
ι →
ι → ι
.
∀ x18 x19 x20 :
ι →
ι → ι
.
∀ x21 .
∀ x22 :
ι → ι
.
∀ x23 x24 .
∀ x25 :
ι → ο
.
∀ x26 x27 .
∀ x28 :
ι → ο
.
∀ x29 :
ι →
ι → ι
.
∀ x30 .
∀ x31 :
ι → ο
.
(
∀ x32 x33 .
x31
x33
⟶
(
x33
=
x32
⟶
False
)
⟶
x31
x32
⟶
False
)
⟶
(
∀ x32 x33 .
x0
x32
x33
⟶
x31
x33
⟶
False
)
⟶
(
∀ x32 .
x31
x32
⟶
(
x32
=
x30
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 .
x1
x32
x33
⟶
(
x31
x33
⟶
False
)
⟶
(
x0
x32
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 .
(
x0
(
x29
x32
x33
)
x32
⟶
False
)
⟶
(
x0
(
x29
x32
x33
)
x33
⟶
False
)
⟶
(
x33
=
x32
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 .
x0
(
x29
x32
x33
)
x33
⟶
x0
(
x29
x32
x33
)
x32
⟶
(
x33
=
x32
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 .
x0
x33
x32
⟶
(
x1
x33
x32
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 .
x3
x33
⟶
(
x2
(
x2
x33
x32
)
x32
=
x2
x33
x32
⟶
False
)
⟶
False
)
⟶
(
x28
x27
⟶
False
)
⟶
(
x31
x4
⟶
False
)
⟶
(
(
x28
x26
⟶
False
)
⟶
False
)
⟶
(
x31
x26
⟶
False
)
⟶
(
(
x25
x24
⟶
False
)
⟶
False
)
⟶
(
(
x31
x5
⟶
False
)
⟶
False
)
⟶
(
(
x3
x23
⟶
False
)
⟶
False
)
⟶
(
x31
x23
⟶
False
)
⟶
(
∀ x32 .
(
x31
x32
⟶
False
)
⟶
x3
x32
⟶
x31
(
x22
x32
)
⟶
False
)
⟶
(
∀ x32 x33 x34 x35 .
(
x3
(
x6
(
x7
x33
x32
)
(
x7
x35
x34
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x32 .
x31
x32
⟶
(
x31
(
x22
x32
)
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 .
(
x3
(
x8
(
x7
x33
x32
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 .
x31
(
x6
x32
x33
)
⟶
False
)
⟶
(
∀ x32 .
(
x28
(
x8
x32
)
⟶
False
)
⟶
False
)
⟶
(
∀ x32 .
x31
(
x8
x32
)
⟶
False
)
⟶
(
∀ x32 x33 .
x31
(
x7
x32
x33
)
⟶
False
)
⟶
(
∀ x32 x33 .
(
x25
(
x7
x32
x33
)
⟶
False
)
⟶
False
)
⟶
(
(
x31
x30
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 .
x31
x33
⟶
x3
x33
⟶
(
x3
(
x2
x33
x32
)
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 .
x31
x33
⟶
x3
x33
⟶
(
x31
(
x2
x33
x32
)
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 .
x3
x33
⟶
x31
x32
⟶
(
x3
(
x2
x33
x32
)
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 .
x3
x33
⟶
x31
x32
⟶
(
x31
(
x2
x33
x32
)
⟶
False
)
⟶
False
)
⟶
(
∀ x32 .
x31
x32
⟶
(
x31
(
x22
x32
)
⟶
False
)
⟶
False
)
⟶
(
∀ x32 .
(
x1
(
x9
x32
)
x32
⟶
False
)
⟶
False
)
⟶
(
(
x31
x21
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 .
x3
x33
⟶
(
x3
(
x2
x33
x32
)
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 .
(
x7
x33
x32
=
x6
(
x6
x33
x32
)
(
x8
x33
)
⟶
False
)
⟶
False
)
⟶
(
(
x30
=
x21
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 .
(
x0
(
x7
(
x19
x33
x32
)
(
x20
x33
x32
)
)
x32
⟶
False
)
⟶
(
x0
(
x20
x33
x32
)
x33
⟶
False
)
⟶
(
x33
=
x22
x32
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 x34 .
x0
(
x20
x34
x33
)
x34
⟶
x0
(
x7
x32
(
x20
x34
x33
)
)
x33
⟶
(
x34
=
x22
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 x34 x35 .
x34
=
x22
x35
⟶
x0
(
x7
x33
x32
)
x35
⟶
(
x0
x32
x34
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 x34 .
x33
=
x22
x34
⟶
x0
x32
x33
⟶
(
x0
(
x7
(
x10
x32
x33
x34
)
x32
)
x34
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 x34 .
x3
x34
⟶
(
x0
(
x16
x33
x32
x34
)
x32
⟶
False
)
⟶
(
x0
(
x17
x33
x32
x34
)
x33
⟶
False
)
⟶
(
x33
=
x18
x34
x32
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 x34 .
x3
x34
⟶
(
x0
(
x7
(
x16
x33
x32
x34
)
(
x17
x33
x32
x34
)
)
x34
⟶
False
)
⟶
(
x0
(
x17
x33
x32
x34
)
x33
⟶
False
)
⟶
(
x33
=
x18
x34
x32
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 x34 x35 .
x3
x35
⟶
x0
(
x17
x32
x33
x35
)
x32
⟶
x0
(
x7
x34
(
x17
x32
x33
x35
)
)
x35
⟶
x0
x34
x33
⟶
(
x32
=
x18
x35
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 x34 x35 x36 .
x3
x36
⟶
x32
=
x18
x36
x33
⟶
x0
(
x7
x35
x34
)
x36
⟶
x0
x35
x33
⟶
(
x0
x34
x32
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 x34 x35 .
x3
x35
⟶
x32
=
x18
x35
x33
⟶
x0
x34
x32
⟶
(
x0
(
x15
x34
x32
x33
x35
)
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 x34 x35 .
x3
x35
⟶
x32
=
x18
x35
x33
⟶
x0
x34
x32
⟶
(
x0
(
x7
(
x15
x34
x32
x33
x35
)
x34
)
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 x34 .
x3
x34
⟶
x3
x32
⟶
(
x0
(
x7
(
x14
x32
x33
x34
)
(
x13
x32
x33
x34
)
)
x34
⟶
False
)
⟶
(
x0
(
x7
(
x14
x32
x33
x34
)
(
x13
x32
x33
x34
)
)
x32
⟶
False
)
⟶
(
x32
=
x2
x34
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 x34 .
x3
x34
⟶
x3
x32
⟶
(
x0
(
x14
x32
x33
x34
)
x33
⟶
False
)
⟶
(
x0
(
x7
(
x14
x32
x33
x34
)
(
x13
x32
x33
x34
)
)
x32
⟶
False
)
⟶
(
x32
=
x2
x34
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 x34 .
x3
x34
⟶
x3
x32
⟶
x0
(
x7
(
x14
x32
x33
x34
)
(
x13
x32
x33
x34
)
)
x32
⟶
x0
(
x14
x32
x33
x34
)
x33
⟶
x0
(
x7
(
x14
x32
x33
x34
)
(
x13
x32
x33
x34
)
)
x34
⟶
(
x32
=
x2
x34
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 x34 x35 x36 .
x3
x36
⟶
x3
x32
⟶
x32
=
x2
x36
x35
⟶
x0
x33
x35
⟶
x0
(
x7
x33
x34
)
x36
⟶
(
x0
(
x7
x33
x34
)
x32
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 x34 x35 x36 .
x3
x36
⟶
x3
x32
⟶
x32
=
x2
x36
x35
⟶
x0
(
x7
x34
x33
)
x32
⟶
(
x0
(
x7
x34
x33
)
x36
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 x34 x35 x36 .
x3
x36
⟶
x3
x32
⟶
x32
=
x2
x36
x35
⟶
x0
(
x7
x33
x34
)
x32
⟶
(
x0
x33
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 .
(
x6
x33
x32
=
x6
x32
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x32 .
(
x28
x32
⟶
False
)
⟶
x31
x32
⟶
False
)
⟶
(
∀ x32 .
x31
x32
⟶
(
x28
x32
⟶
False
)
⟶
False
)
⟶
(
∀ x32 .
x31
x32
⟶
(
x3
x32
⟶
False
)
⟶
False
)
⟶
(
∀ x32 x33 .
x0
x32
x33
⟶
x0
x33
x32
⟶
False
)
⟶
(
x22
(
x2
x11
x12
)
=
x18
x11
x12
⟶
False
)
⟶
(
(
x3
x11
⟶
False
)
⟶
False
)
⟶
False
(proof)