Search for blocks/addresses/...
Proofgold Asset
asset id
e7de50e69e4de9b170e9e93dd72a4004876bf2901ed867ee77b1bc6d67b84a56
asset hash
a8f656f9ea24e98683d2a8e79d5665efc26fbbaacbfe450960e40e04537c1e73
bday / block
35143
tx
dfb7c..
preasset
doc published by
PrPhD..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Theorem
b5f99..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 :
ι →
ι → ο
.
∀ x5 :
ι → ι
.
∀ x6 :
ι →
ι → ι
.
∀ x7 :
ι →
ι → ο
.
∀ x8 x9 :
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 x12 x13 x14 x15 x16 x17 x18 x19 .
∀ x20 :
ι →
ι → ο
.
∀ x21 :
ι →
ι → ι
.
∀ x22 :
ι →
ι →
ι →
ι → ο
.
∀ x23 :
ι → ι
.
∀ x24 :
ι →
ι → ι
.
∀ x25 :
ι →
ι → ο
.
(
∀ x26 x27 x28 x29 .
x25
x28
x29
⟶
x25
x27
x26
⟶
(
x25
(
x24
x28
x27
)
(
x24
x29
x26
)
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 x28 x29 x30 x31 .
x0
x31
⟶
x3
x31
⟶
x0
x30
⟶
x3
x30
⟶
x25
(
x1
x31
)
(
x24
x28
x29
)
⟶
x25
(
x1
x30
)
(
x24
x27
x26
)
⟶
(
x25
(
x1
(
x2
x31
x30
)
)
(
x24
(
x24
x28
x27
)
(
x24
x29
x26
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
x0
x27
⟶
x3
x27
⟶
x0
x26
⟶
x3
x26
⟶
(
x25
(
x23
(
x2
x27
x26
)
)
(
x24
(
x23
x27
)
(
x23
x26
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 x28 .
x0
x28
⟶
x25
(
x1
x28
)
x26
⟶
x25
(
x23
x28
)
x27
⟶
(
x4
x28
(
x5
(
x24
x26
x27
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
x25
x27
x26
⟶
(
x4
x27
(
x5
x26
)
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
x4
x27
(
x5
x26
)
⟶
(
x25
x27
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 x28 .
x25
x27
x28
⟶
x25
x28
x26
⟶
(
x25
x27
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x26 .
(
x25
x26
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 x28 .
x4
x28
(
x5
(
x24
x26
x27
)
)
⟶
(
x22
x26
x27
x28
x28
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 x28 x29 .
x4
x29
(
x5
(
x24
x28
x27
)
)
⟶
x25
x29
x26
⟶
(
x22
x28
x27
x29
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 x28 x29 .
x4
x29
(
x5
(
x24
x28
x27
)
)
⟶
x22
x28
x27
x29
x26
⟶
(
x25
x29
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
x0
x27
⟶
x7
x27
x26
⟶
(
x6
x26
x27
=
x23
x27
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
x0
x27
⟶
x20
x27
x26
⟶
(
x21
x26
x27
=
x1
x27
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
(
x3
(
x8
x26
x27
)
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
(
x7
(
x8
x26
x27
)
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
(
x20
(
x8
x27
x26
)
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
(
x0
(
x8
x26
x27
)
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
(
x7
(
x9
x26
x27
)
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
(
x20
(
x9
x27
x26
)
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
(
x0
(
x9
x26
x27
)
⟶
False
)
⟶
False
)
⟶
(
(
x3
x19
⟶
False
)
⟶
False
)
⟶
(
(
x0
x19
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 x28 x29 .
x4
x29
(
x5
(
x24
x28
(
x24
x26
x27
)
)
)
⟶
(
x0
(
x23
x29
)
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 x28 x29 .
x4
x29
(
x5
(
x24
(
x24
x27
x26
)
x28
)
)
⟶
(
x0
(
x1
x29
)
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
(
x0
(
x24
x26
x27
)
⟶
False
)
⟶
False
)
⟶
(
∀ x26 .
(
x4
(
x10
x26
)
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
x0
x27
⟶
x3
x27
⟶
x0
x26
⟶
x3
x26
⟶
(
x3
(
x2
x27
x26
)
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
x0
x27
⟶
x3
x27
⟶
x0
x26
⟶
x3
x26
⟶
(
x0
(
x2
x27
x26
)
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
x0
x27
⟶
x7
x27
x26
⟶
(
x4
(
x6
x26
x27
)
(
x5
x26
)
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
x0
x27
⟶
x20
x27
x26
⟶
(
x4
(
x21
x26
x27
)
(
x5
x26
)
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 x28 .
x0
x28
⟶
x7
x28
x26
⟶
x4
x27
(
x5
x28
)
⟶
(
x7
x27
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 x28 .
x0
x28
⟶
x20
x28
x26
⟶
x4
x27
(
x5
x28
)
⟶
(
x20
x27
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
x0
x27
⟶
x3
x27
⟶
x4
x26
(
x5
x27
)
⟶
(
x3
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 x28 .
x4
x28
(
x5
(
x24
x26
x27
)
)
⟶
(
x7
x28
x27
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 x28 .
x4
x28
(
x5
(
x24
x27
x26
)
)
⟶
(
x20
x28
x27
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 .
x0
x27
⟶
x4
x26
(
x5
x27
)
⟶
(
x0
x26
⟶
False
)
⟶
False
)
⟶
(
∀ x26 x27 x28 .
x4
x28
(
x5
(
x24
x26
x27
)
)
⟶
(
x0
x28
⟶
False
)
⟶
False
)
⟶
(
x3
(
x2
x15
x11
)
⟶
x4
(
x2
x15
x11
)
(
x5
(
x24
(
x24
(
x24
x18
x12
)
(
x24
x17
x13
)
)
(
x24
x16
x14
)
)
)
⟶
False
)
⟶
(
(
x4
x11
(
x5
(
x24
(
x24
x12
x13
)
x14
)
)
⟶
False
)
⟶
False
)
⟶
(
(
x3
x11
⟶
False
)
⟶
False
)
⟶
(
(
x4
x15
(
x5
(
x24
(
x24
x18
x17
)
x16
)
)
⟶
False
)
⟶
False
)
⟶
(
(
x3
x15
⟶
False
)
⟶
False
)
⟶
False
(proof)