Search for blocks/addresses/...

Proofgold Asset

asset id
ea0f4ddfd9f7930587b3113c9f704254fa8c5c627e2596ef29d2c03be1e9f323
asset hash
352326c6f4d03cddfbbfe53818b045123ffb45a58736333df0b4e37b7158d2db
bday / block
19014
tx
2d143..
preasset
doc published by Pr4zB..
Param bijbij : ιι(ιι) → ο
Definition equipequip := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . bij x0 x1 x3x2)x2
Param SingSing : ιι
Param ordsuccordsucc : ιι
Definition u1 := 1
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known bijIbijI : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3x0x2 x3x1)(∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)(∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)bij x0 x1 x2
Known In_0_1In_0_1 : 01
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known cases_1cases_1 : ∀ x0 . x01∀ x1 : ι → ο . x1 0x1 x0
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known SingISingI : ∀ x0 . x0Sing x0
Theorem 5169f..equip_Sing_1 : ∀ x0 . equip (Sing x0) u1 (proof)
Definition injinj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)
Definition atleastpatleastp := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . inj x0 x1 x3x2)x2
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Theorem 4f2c3.. : ∀ x0 . atleastp (Sing x0) u1 (proof)
Param nat_pnat_p : ιο
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Known Empty_or_exEmpty_or_ex : ∀ x0 . or (x0 = 0) (∀ x1 : ο . (∀ x2 . x2x0x1)x1)
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known 71267.. : ∀ x0 . atleastp 0 x0
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Param binunionbinunion : ιιι
Param setminussetminus : ιιι
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Param setsumsetsum : ιιι
Known nat_setsum_ordsuccnat_setsum1_ordsucc : ∀ x0 . nat_p x0setsum 1 x0 = ordsucc x0
Known 385ef.. : ∀ x0 x1 x2 x3 . atleastp x0 x2atleastp x1 x3(∀ x4 . x4x0nIn x4 x1)atleastp (binunion x0 x1) (setsum x2 x3)
Known nat_ordsuccnat_ordsucc : ∀ x0 . nat_p x0nat_p (ordsucc x0)
Param combine_funcscombine_funcs : ιι(ιι) → (ιι) → ιι
Param Inj0Inj0 : ιι
Param Inj1Inj1 : ιι
Known f4c7c.. : ∀ x0 x1 . ∀ x2 : ι → ο . (∀ x3 . x3x0x2 (Inj0 x3))(∀ x3 . x3x1x2 (Inj1 x3))∀ x3 . x3setsum x0 x1x2 x3
Known combine_funcs_eq1combine_funcs_eq1 : ∀ x0 x1 . ∀ x2 x3 : ι → ι . ∀ x4 . combine_funcs x0 x1 x2 x3 (Inj0 x4) = x2 x4
Known combine_funcs_eq2combine_funcs_eq2 : ∀ x0 x1 . ∀ x2 x3 : ι → ι . ∀ x4 . combine_funcs x0 x1 x2 x3 (Inj1 x4) = x3 x4
Known setminusE1setminusE1 : ∀ x0 x1 x2 . x2setminus x0 x1x2x0
Known FalseEFalseE : False∀ x0 : ο . x0
Known setminusE2setminusE2 : ∀ x0 x1 x2 . x2setminus x0 x1nIn x2 x1
Known setminus_nIn_I2setminus_nIn_I2 : ∀ x0 x1 x2 . x2x1nIn x2 (setminus x0 x1)
Known binunion_combinunion_com : ∀ x0 x1 . binunion x0 x1 = binunion x1 x0
Known eb0c4..binunion_remove1_eq : ∀ x0 x1 . x1x0x0 = binunion (setminus x0 (Sing x1)) (Sing x1)
Theorem 48e0f.. : ∀ x0 . nat_p x0∀ x1 . or (atleastp x1 x0) (atleastp (ordsucc x0) x1) (proof)
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param u12 : ι
Definition u2 := ordsucc u1
Definition u3 := ordsucc u2
Definition u4 := ordsucc u3
Definition u5 := ordsucc u4
Param u16 : ι
Definition u6 := ordsucc u5
Param binintersectbinintersect : ιιι
Known nat_1nat_1 : nat_p 1
Known 4fb58..Pigeonhole_not_atleastp_ordsucc : ∀ x0 . nat_p x0not (atleastp (ordsucc x0) x0)
Known nat_5nat_5 : nat_p 5
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Known nat_4nat_4 : nat_p 4
Known binintersectE1binintersectE1 : ∀ x0 x1 x2 . x2binintersect x0 x1x2x0
Known binintersect_Subq_2binintersect_Subq_2 : ∀ x0 x1 . binintersect x0 x1x1
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Known binintersectIbinintersectI : ∀ x0 x1 x2 . x2x0x2x1x2binintersect x0 x1
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Known setminusIsetminusI : ∀ x0 x1 x2 . x2x0nIn x2 x1x2setminus x0 x1
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known binintersectE2binintersectE2 : ∀ x0 x1 x2 . x2binintersect x0 x1x2x1
Theorem a62ab.. : ∀ x0 : ι → ι → ο . (∀ x1 . x1u12atleastp u5 x1not (∀ x2 . x2x1∀ x3 . x3x1not (x0 x2 x3)))∀ x1 . x1u16atleastp u6 x1(∀ x2 . x2x1∀ x3 . x3x1not (x0 x2 x3))atleastp u2 (setminus x1 u12) (proof)