Search for blocks/addresses/...
Proofgold Asset
asset id
ed2fd3866818e168d89ef505affe5e4f526e607cbe58f770c8ee8c95ae946d0b
asset hash
f9439adec48e20af3f9f9d1607bc7d9155ec8cb33e7e4a943451b2962af9ff57
bday / block
18355
tx
22511..
preasset
doc published by
Pr4zB..
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Definition
u7
:=
ordsucc
u6
Definition
u8
:=
ordsucc
u7
Definition
u9
:=
ordsucc
u8
Definition
u10
:=
ordsucc
u9
Definition
u11
:=
ordsucc
u10
Definition
u12
:=
ordsucc
u11
Definition
u13
:=
ordsucc
u12
Definition
u14
:=
ordsucc
u13
Definition
u15
:=
ordsucc
u14
Definition
u16
:=
ordsucc
u15
Definition
u17
:=
ordsucc
u16
Definition
u18
:=
ordsucc
u17
Definition
u19
:=
ordsucc
u18
Known
neq_ordsucc_0
neq_ordsucc_0
:
∀ x0 .
ordsucc
x0
=
0
⟶
∀ x1 : ο .
x1
Theorem
fd18a..
:
u19
=
0
⟶
∀ x0 : ο .
x0
(proof)
Known
ordsucc_inj_contra
ordsucc_inj_contra
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
ordsucc
x0
=
ordsucc
x1
⟶
∀ x2 : ο .
x2
Known
99743..
:
u18
=
0
⟶
∀ x0 : ο .
x0
Theorem
70279..
:
u19
=
u1
⟶
∀ x0 : ο .
x0
(proof)
Known
9ccac..
:
u18
=
u1
⟶
∀ x0 : ο .
x0
Theorem
81672..
:
u19
=
u2
⟶
∀ x0 : ο .
x0
(proof)
Known
ad866..
:
u18
=
u2
⟶
∀ x0 : ο .
x0
Theorem
2e7b7..
:
u19
=
u3
⟶
∀ x0 : ο .
x0
(proof)
Known
1f012..
:
u18
=
u3
⟶
∀ x0 : ο .
x0
Theorem
26e28..
:
u19
=
u4
⟶
∀ x0 : ο .
x0
(proof)
Known
60e5c..
:
u18
=
u4
⟶
∀ x0 : ο .
x0
Theorem
dcd9d..
:
u19
=
u5
⟶
∀ x0 : ο .
x0
(proof)
Known
ac512..
:
u18
=
u5
⟶
∀ x0 : ο .
x0
Theorem
b1809..
:
u19
=
u6
⟶
∀ x0 : ο .
x0
(proof)
Known
8347f..
:
u18
=
u6
⟶
∀ x0 : ο .
x0
Theorem
36989..
:
u19
=
u7
⟶
∀ x0 : ο .
x0
(proof)
Known
c9d3b..
:
u18
=
u7
⟶
∀ x0 : ο .
x0
Theorem
9b462..
:
u19
=
u8
⟶
∀ x0 : ο .
x0
(proof)
Known
d47e8..
:
u18
=
u8
⟶
∀ x0 : ο .
x0
Theorem
4545d..
:
u19
=
u9
⟶
∀ x0 : ο .
x0
(proof)
Known
d3922..
:
u18
=
u9
⟶
∀ x0 : ο .
x0
Theorem
7d160..
:
u19
=
u10
⟶
∀ x0 : ο .
x0
(proof)
Known
a335e..
:
u18
=
u10
⟶
∀ x0 : ο .
x0
Theorem
8109a..
:
u19
=
u11
⟶
∀ x0 : ο .
x0
(proof)
Known
8da43..
:
u18
=
u11
⟶
∀ x0 : ο .
x0
Theorem
a5243..
:
u19
=
u12
⟶
∀ x0 : ο .
x0
(proof)
Known
c1bd9..
:
u18
=
u12
⟶
∀ x0 : ο .
x0
Theorem
8c598..
:
u19
=
u13
⟶
∀ x0 : ο .
x0
(proof)
Known
5cb8a..
:
u18
=
u13
⟶
∀ x0 : ο .
x0
Theorem
35149..
:
u19
=
u14
⟶
∀ x0 : ο .
x0
(proof)
Known
d92fd..
:
u18
=
u14
⟶
∀ x0 : ο .
x0
Theorem
38ccc..
:
u19
=
u15
⟶
∀ x0 : ο .
x0
(proof)
Known
dfba1..
:
u18
=
u15
⟶
∀ x0 : ο .
x0
Theorem
0384c..
:
u19
=
u16
⟶
∀ x0 : ο .
x0
(proof)
Known
0eaf4..
:
u18
=
u16
⟶
∀ x0 : ο .
x0
Theorem
3c054..
:
u19
=
u17
⟶
∀ x0 : ο .
x0
(proof)
Known
82c6a..
:
u18
=
u17
⟶
∀ x0 : ο .
x0
Theorem
97eb4..
:
u19
=
u18
⟶
∀ x0 : ο .
x0
(proof)
Definition
u20
:=
ordsucc
u19
Theorem
4552b..
:
u20
=
0
⟶
∀ x0 : ο .
x0
(proof)
Theorem
d8b53..
:
u20
=
u1
⟶
∀ x0 : ο .
x0
(proof)
Theorem
c9329..
:
u20
=
u2
⟶
∀ x0 : ο .
x0
(proof)
Theorem
0af1b..
:
u20
=
u3
⟶
∀ x0 : ο .
x0
(proof)
Theorem
f2a22..
:
u20
=
u4
⟶
∀ x0 : ο .
x0
(proof)
Theorem
98620..
:
u20
=
u5
⟶
∀ x0 : ο .
x0
(proof)
Theorem
fd91d..
:
u20
=
u6
⟶
∀ x0 : ο .
x0
(proof)
Theorem
ae219..
:
u20
=
u7
⟶
∀ x0 : ο .
x0
(proof)
Theorem
54bdc..
:
u20
=
u8
⟶
∀ x0 : ο .
x0
(proof)
Theorem
6bb84..
:
u20
=
u9
⟶
∀ x0 : ο .
x0
(proof)
Theorem
8b01c..
:
u20
=
u10
⟶
∀ x0 : ο .
x0
(proof)
Theorem
66622..
:
u20
=
u11
⟶
∀ x0 : ο .
x0
(proof)
Theorem
01bb6..
:
u20
=
u12
⟶
∀ x0 : ο .
x0
(proof)
Theorem
551bd..
:
u20
=
u13
⟶
∀ x0 : ο .
x0
(proof)
Theorem
28d21..
:
u20
=
u14
⟶
∀ x0 : ο .
x0
(proof)
Theorem
bf7ce..
:
u20
=
u15
⟶
∀ x0 : ο .
x0
(proof)
Theorem
996e8..
:
u20
=
u16
⟶
∀ x0 : ο .
x0
(proof)
Theorem
9ce5b..
:
u20
=
u17
⟶
∀ x0 : ο .
x0
(proof)
Theorem
75fad..
:
u20
=
u18
⟶
∀ x0 : ο .
x0
(proof)
Theorem
2615b..
:
u20
=
u19
⟶
∀ x0 : ο .
x0
(proof)
Definition
u21
:=
ordsucc
u20
Theorem
1158c..
:
u21
=
0
⟶
∀ x0 : ο .
x0
(proof)
Theorem
db0cd..
:
u21
=
u1
⟶
∀ x0 : ο .
x0
(proof)
Theorem
ebee4..
:
u21
=
u2
⟶
∀ x0 : ο .
x0
(proof)
Theorem
272ed..
:
u21
=
u3
⟶
∀ x0 : ο .
x0
(proof)
Theorem
ac7ac..
:
u21
=
u4
⟶
∀ x0 : ο .
x0
(proof)
Theorem
18fbb..
:
u21
=
u5
⟶
∀ x0 : ο .
x0
(proof)
Theorem
2ec13..
:
u21
=
u6
⟶
∀ x0 : ο .
x0
(proof)
Theorem
471c9..
:
u21
=
u7
⟶
∀ x0 : ο .
x0
(proof)
Theorem
ada11..
:
u21
=
u8
⟶
∀ x0 : ο .
x0
(proof)
Theorem
f159f..
:
u21
=
u9
⟶
∀ x0 : ο .
x0
(proof)
Theorem
b1234..
:
u21
=
u10
⟶
∀ x0 : ο .
x0
(proof)
Theorem
4c4e0..
:
u21
=
u11
⟶
∀ x0 : ο .
x0
(proof)
Theorem
6371d..
:
u21
=
u12
⟶
∀ x0 : ο .
x0
(proof)
Theorem
87a9a..
:
u21
=
u13
⟶
∀ x0 : ο .
x0
(proof)
Theorem
25d09..
:
u21
=
u14
⟶
∀ x0 : ο .
x0
(proof)
Theorem
17bc6..
:
u21
=
u15
⟶
∀ x0 : ο .
x0
(proof)
Theorem
39009..
:
u21
=
u16
⟶
∀ x0 : ο .
x0
(proof)
Theorem
b821e..
:
u21
=
u17
⟶
∀ x0 : ο .
x0
(proof)
Theorem
80a82..
:
u21
=
u18
⟶
∀ x0 : ο .
x0
(proof)
Theorem
44711..
:
u21
=
u19
⟶
∀ x0 : ο .
x0
(proof)
Theorem
32e25..
:
u21
=
u20
⟶
∀ x0 : ο .
x0
(proof)
Definition
u22
:=
ordsucc
u21
Theorem
e8714..
:
u22
=
0
⟶
∀ x0 : ο .
x0
(proof)
Theorem
9e7b1..
:
u22
=
u1
⟶
∀ x0 : ο .
x0
(proof)
Theorem
af720..
:
u22
=
u2
⟶
∀ x0 : ο .
x0
(proof)
Theorem
17aea..
:
u22
=
u3
⟶
∀ x0 : ο .
x0
(proof)
Theorem
7f2f2..
:
u22
=
u4
⟶
∀ x0 : ο .
x0
(proof)
Theorem
9a712..
:
u22
=
u5
⟶
∀ x0 : ο .
x0
(proof)
Theorem
f4b67..
:
u22
=
u6
⟶
∀ x0 : ο .
x0
(proof)
Theorem
362ec..
:
u22
=
u7
⟶
∀ x0 : ο .
x0
(proof)
Theorem
9d557..
:
u22
=
u8
⟶
∀ x0 : ο .
x0
(proof)
Theorem
ac02b..
:
u22
=
u9
⟶
∀ x0 : ο .
x0
(proof)
Theorem
4d4dd..
:
u22
=
u10
⟶
∀ x0 : ο .
x0
(proof)
Theorem
2051a..
:
u22
=
u11
⟶
∀ x0 : ο .
x0
(proof)
Theorem
db21d..
:
u22
=
u12
⟶
∀ x0 : ο .
x0
(proof)
Theorem
6a662..
:
u22
=
u13
⟶
∀ x0 : ο .
x0
(proof)
Theorem
bd746..
:
u22
=
u14
⟶
∀ x0 : ο .
x0
(proof)
Theorem
ac3f7..
:
u22
=
u15
⟶
∀ x0 : ο .
x0
(proof)
Theorem
e7d80..
:
u22
=
u16
⟶
∀ x0 : ο .
x0
(proof)
Theorem
d3e26..
:
u22
=
u17
⟶
∀ x0 : ο .
x0
(proof)
Theorem
7957c..
:
u22
=
u18
⟶
∀ x0 : ο .
x0
(proof)
Theorem
b0147..
:
u22
=
u19
⟶
∀ x0 : ο .
x0
(proof)
Theorem
c8ac0..
:
u22
=
u20
⟶
∀ x0 : ο .
x0
(proof)
Theorem
41315..
:
u22
=
u21
⟶
∀ x0 : ο .
x0
(proof)
Definition
u23
:=
ordsucc
u22
Theorem
c432c..
:
u23
=
0
⟶
∀ x0 : ο .
x0
(proof)
Theorem
13d86..
:
u23
=
u1
⟶
∀ x0 : ο .
x0
(proof)
Theorem
60a3a..
:
u23
=
u2
⟶
∀ x0 : ο .
x0
(proof)
Theorem
3d5c1..
:
u23
=
u3
⟶
∀ x0 : ο .
x0
(proof)
Theorem
7d70a..
:
u23
=
u4
⟶
∀ x0 : ο .
x0
(proof)
Theorem
b1d7f..
:
u23
=
u5
⟶
∀ x0 : ο .
x0
(proof)
Theorem
51d86..
:
u23
=
u6
⟶
∀ x0 : ο .
x0
(proof)
Theorem
49af3..
:
u23
=
u7
⟶
∀ x0 : ο .
x0
(proof)
Theorem
b0bcb..
:
u23
=
u8
⟶
∀ x0 : ο .
x0
(proof)
Theorem
b0849..
:
u23
=
u9
⟶
∀ x0 : ο .
x0
(proof)
Theorem
b7dd9..
:
u23
=
u10
⟶
∀ x0 : ο .
x0
(proof)
Theorem
258a9..
:
u23
=
u11
⟶
∀ x0 : ο .
x0
(proof)
Theorem
3982c..
:
u23
=
u12
⟶
∀ x0 : ο .
x0
(proof)
Theorem
4e72c..
:
u23
=
u13
⟶
∀ x0 : ο .
x0
(proof)
Theorem
ef472..
:
u23
=
u14
⟶
∀ x0 : ο .
x0
(proof)
Theorem
eff68..
:
u23
=
u15
⟶
∀ x0 : ο .
x0
(proof)
Theorem
c26ad..
:
u23
=
u16
⟶
∀ x0 : ο .
x0
(proof)
Theorem
e9a91..
:
u23
=
u17
⟶
∀ x0 : ο .
x0
(proof)
Theorem
3bccb..
:
u23
=
u18
⟶
∀ x0 : ο .
x0
(proof)
Theorem
ad532..
:
u23
=
u19
⟶
∀ x0 : ο .
x0
(proof)
Theorem
94779..
:
u23
=
u20
⟶
∀ x0 : ο .
x0
(proof)
Theorem
1a616..
:
u23
=
u21
⟶
∀ x0 : ο .
x0
(proof)
Theorem
3105f..
:
u23
=
u22
⟶
∀ x0 : ο .
x0
(proof)