Search for blocks/addresses/...
Proofgold Asset
asset id
ee99b085f04db58651084d4163342dcb40993d42443940226ab2d1f52680e8ca
asset hash
e19d218102246161a02ca41104baeecdb796228b8f95a99f00f0003d241c0f56
bday / block
2837
tx
80017..
preasset
doc published by
PrGxv..
Param
0fc90..
:
ι
→
(
ι
→
ι
) →
ι
Param
4ae4a..
:
ι
→
ι
Param
4a7ef..
:
ι
Param
If_i
:
ο
→
ι
→
ι
→
ι
Param
eb53d..
:
ι
→
CT2
ι
Definition
b6bd3..
:=
λ x0 .
λ x1 x2 :
ι →
ι → ι
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
(
If_i
(
x3
=
4ae4a..
4a7ef..
)
(
eb53d..
x0
x1
)
(
eb53d..
x0
x2
)
)
)
Param
f482f..
:
ι
→
ι
→
ι
Known
52da6..
:
∀ x0 x1 x2 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
x1
x2
)
)
)
4a7ef..
=
x0
Theorem
b2295..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
x0
=
b6bd3..
x1
x2
x3
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
8ccc5..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
x0
=
f482f..
(
b6bd3..
x0
x1
x2
)
4a7ef..
(proof)
Param
e3162..
:
ι
→
ι
→
ι
→
ι
Known
c2bca..
:
∀ x0 x1 x2 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
x1
x2
)
)
)
(
4ae4a..
4a7ef..
)
=
x1
Known
35054..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
e3162..
(
eb53d..
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
27335..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
x0
=
b6bd3..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
∀ x5 .
prim1
x5
x1
⟶
x2
x4
x5
=
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x4
x5
(proof)
Theorem
a5628..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x3
x4
=
e3162..
(
f482f..
(
b6bd3..
x0
x1
x2
)
(
4ae4a..
4a7ef..
)
)
x3
x4
(proof)
Known
11d6d..
:
∀ x0 x1 x2 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
x1
x2
)
)
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
x2
Theorem
9101a..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
x0
=
b6bd3..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
∀ x5 .
prim1
x5
x1
⟶
x3
x4
x5
=
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x4
x5
(proof)
Theorem
f278f..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x2
x3
x4
=
e3162..
(
f482f..
(
b6bd3..
x0
x1
x2
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
(proof)
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Theorem
4f0f8..
:
∀ x0 x1 .
∀ x2 x3 x4 x5 :
ι →
ι → ι
.
b6bd3..
x0
x2
x4
=
b6bd3..
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x2
x6
x7
=
x3
x6
x7
)
)
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x6
x7
=
x5
x6
x7
)
(proof)
Known
8fdaf..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
eb53d..
x0
x1
=
eb53d..
x0
x2
Theorem
dcf72..
:
∀ x0 .
∀ x1 x2 x3 x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x1
x5
x6
=
x2
x5
x6
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x3
x5
x6
=
x4
x5
x6
)
⟶
b6bd3..
x0
x1
x3
=
b6bd3..
x0
x2
x4
(proof)
Definition
e2219..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x3
x4
x5
)
x2
)
⟶
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
∀ x6 .
prim1
x6
x2
⟶
prim1
(
x4
x5
x6
)
x2
)
⟶
x1
(
b6bd3..
x2
x3
x4
)
)
⟶
x1
x0
Theorem
c2d7a..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x1
x2
x3
)
x0
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x2
x3
x4
)
x0
)
⟶
e2219..
(
b6bd3..
x0
x1
x2
)
(proof)
Theorem
22315..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
e2219..
(
b6bd3..
x0
x1
x2
)
⟶
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x1
x3
x4
)
x0
(proof)
Theorem
d90ae..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
e2219..
(
b6bd3..
x0
x1
x2
)
⟶
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x2
x3
x4
)
x0
(proof)
Theorem
d40c9..
:
∀ x0 .
e2219..
x0
⟶
x0
=
b6bd3..
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
81fc5..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
4b220..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→ ι
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
x2
x5
x6
=
x4
x5
x6
)
⟶
∀ x5 :
ι →
ι → ι
.
(
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x3
x6
x7
=
x5
x6
x7
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
81fc5..
(
b6bd3..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
a70ce..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
12a13..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→ ο
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
x2
x5
x6
=
x4
x5
x6
)
⟶
∀ x5 :
ι →
ι → ι
.
(
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x3
x6
x7
=
x5
x6
x7
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
a70ce..
(
b6bd3..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
971d3..
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
λ x2 :
ι → ι
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
(
If_i
(
x3
=
4ae4a..
4a7ef..
)
(
eb53d..
x0
x1
)
(
0fc90..
x0
x2
)
)
)
Theorem
96049..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
x0
=
971d3..
x1
x2
x3
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
38865..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι → ι
.
x0
=
f482f..
(
971d3..
x0
x1
x2
)
4a7ef..
(proof)
Theorem
33e2c..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
x0
=
971d3..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
∀ x5 .
prim1
x5
x1
⟶
x2
x4
x5
=
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x4
x5
(proof)
Theorem
252d8..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι → ι
.
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x3
x4
=
e3162..
(
f482f..
(
971d3..
x0
x1
x2
)
(
4ae4a..
4a7ef..
)
)
x3
x4
(proof)
Known
f22ec..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
f482f..
(
0fc90..
x0
x1
)
x2
=
x1
x2
Theorem
3d0b4..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
x0
=
971d3..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
x3
x4
=
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x4
(proof)
Theorem
2b252..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι → ι
.
∀ x3 .
prim1
x3
x0
⟶
x2
x3
=
f482f..
(
f482f..
(
971d3..
x0
x1
x2
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(proof)
Theorem
f3329..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι → ι
.
971d3..
x0
x2
x4
=
971d3..
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x2
x6
x7
=
x3
x6
x7
)
)
(
∀ x6 .
prim1
x6
x0
⟶
x4
x6
=
x5
x6
)
(proof)
Known
4402a..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
0fc90..
x0
x1
=
0fc90..
x0
x2
Theorem
0c169..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι → ι
.
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x1
x5
x6
=
x2
x5
x6
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
x3
x5
=
x4
x5
)
⟶
971d3..
x0
x1
x3
=
971d3..
x0
x2
x4
(proof)
Definition
a5e4b..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x3
x4
x5
)
x2
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x4
x5
)
x2
)
⟶
x1
(
971d3..
x2
x3
x4
)
)
⟶
x1
x0
Theorem
d80b7..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x1
x2
x3
)
x0
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x0
)
⟶
a5e4b..
(
971d3..
x0
x1
x2
)
(proof)
Theorem
f462c..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι → ι
.
a5e4b..
(
971d3..
x0
x1
x2
)
⟶
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x1
x3
x4
)
x0
(proof)
Theorem
bfd44..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι → ι
.
a5e4b..
(
971d3..
x0
x1
x2
)
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x0
(proof)
Theorem
3c7c5..
:
∀ x0 .
a5e4b..
x0
⟶
x0
=
971d3..
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
ccf31..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι → ι
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
eff65..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι → ι
)
→ ι
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
x2
x5
x6
=
x4
x5
x6
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
prim1
x6
x1
⟶
x3
x6
=
x5
x6
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
ccf31..
(
971d3..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
f4433..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι → ι
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
e928d..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι → ι
)
→ ο
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
x2
x5
x6
=
x4
x5
x6
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
prim1
x6
x1
⟶
x3
x6
=
x5
x6
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
f4433..
(
971d3..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Param
d2155..
:
ι
→
(
ι
→
ι
→
ο
) →
ι
Definition
b5cc3..
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
λ x2 :
ι →
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
(
If_i
(
x3
=
4ae4a..
4a7ef..
)
(
eb53d..
x0
x1
)
(
d2155..
x0
x2
)
)
)
Theorem
f46b1..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
x0
=
b5cc3..
x1
x2
x3
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
b29ea..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 x3 :
ι →
ι → ο
.
x3
x0
(
f482f..
(
b5cc3..
x0
x1
x2
)
4a7ef..
)
⟶
x3
(
f482f..
(
b5cc3..
x0
x1
x2
)
4a7ef..
)
x0
(proof)
Theorem
b0ed2..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
x0
=
b5cc3..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
∀ x5 .
prim1
x5
x1
⟶
x2
x4
x5
=
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x4
x5
(proof)
Theorem
9890e..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x3
x4
=
e3162..
(
f482f..
(
b5cc3..
x0
x1
x2
)
(
4ae4a..
4a7ef..
)
)
x3
x4
(proof)
Param
2b2e3..
:
ι
→
ι
→
ι
→
ο
Known
67416..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
2b2e3..
(
d2155..
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
0d5f9..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
x0
=
b5cc3..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
∀ x5 .
prim1
x5
x1
⟶
x3
x4
x5
=
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x4
x5
(proof)
Theorem
aa310..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x2
x3
x4
=
2b2e3..
(
f482f..
(
b5cc3..
x0
x1
x2
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
(proof)
Theorem
f1c06..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι →
ι → ο
.
b5cc3..
x0
x2
x4
=
b5cc3..
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x2
x6
x7
=
x3
x6
x7
)
)
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x6
x7
=
x5
x6
x7
)
(proof)
Param
iff
:
ο
→
ο
→
ο
Known
62ef7..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
iff
(
x1
x3
x4
)
(
x2
x3
x4
)
)
⟶
d2155..
x0
x1
=
d2155..
x0
x2
Theorem
af357..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι →
ι → ο
.
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x1
x5
x6
=
x2
x5
x6
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
iff
(
x3
x5
x6
)
(
x4
x5
x6
)
)
⟶
b5cc3..
x0
x1
x3
=
b5cc3..
x0
x2
x4
(proof)
Definition
ec962..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x3
x4
x5
)
x2
)
⟶
∀ x4 :
ι →
ι → ο
.
x1
(
b5cc3..
x2
x3
x4
)
)
⟶
x1
x0
Theorem
8c7f6..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x1
x2
x3
)
x0
)
⟶
∀ x2 :
ι →
ι → ο
.
ec962..
(
b5cc3..
x0
x1
x2
)
(proof)
Theorem
7a5e3..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι →
ι → ο
.
ec962..
(
b5cc3..
x0
x1
x2
)
⟶
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x1
x3
x4
)
x0
(proof)
Known
iff_refl
:
∀ x0 : ο .
iff
x0
x0
Theorem
567a6..
:
∀ x0 .
ec962..
x0
⟶
x0
=
b5cc3..
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
68fde..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
6588e..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
x2
x5
x6
=
x4
x5
x6
)
⟶
∀ x5 :
ι →
ι → ο
.
(
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
iff
(
x3
x6
x7
)
(
x5
x6
x7
)
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
68fde..
(
b5cc3..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
c65d4..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
117a0..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
x2
x5
x6
=
x4
x5
x6
)
⟶
∀ x5 :
ι →
ι → ο
.
(
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
iff
(
x3
x6
x7
)
(
x5
x6
x7
)
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
c65d4..
(
b5cc3..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Definition
33a0d..
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
λ x2 :
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
(
If_i
(
x3
=
4ae4a..
4a7ef..
)
(
eb53d..
x0
x1
)
(
1216a..
x0
x2
)
)
)
Theorem
928fb..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ο
.
x0
=
33a0d..
x1
x2
x3
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
0d30e..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι → ο
.
x0
=
f482f..
(
33a0d..
x0
x1
x2
)
4a7ef..
(proof)
Theorem
92cc6..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ο
.
x0
=
33a0d..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
∀ x5 .
prim1
x5
x1
⟶
x2
x4
x5
=
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x4
x5
(proof)
Theorem
b55f5..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x3
x4
=
e3162..
(
f482f..
(
33a0d..
x0
x1
x2
)
(
4ae4a..
4a7ef..
)
)
x3
x4
(proof)
Param
decode_p
:
ι
→
ι
→
ο
Known
931fe..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
decode_p
(
1216a..
x0
x1
)
x2
=
x1
x2
Theorem
49df8..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ο
.
x0
=
33a0d..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
x3
x4
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x4
(proof)
Theorem
82801..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
x2
x3
=
decode_p
(
f482f..
(
33a0d..
x0
x1
x2
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(proof)
Theorem
3339e..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι → ο
.
33a0d..
x0
x2
x4
=
33a0d..
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x2
x6
x7
=
x3
x6
x7
)
)
(
∀ x6 .
prim1
x6
x0
⟶
x4
x6
=
x5
x6
)
(proof)
Known
ee7ef..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
1216a..
x0
x1
=
1216a..
x0
x2
Theorem
52ca8..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι → ο
.
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x1
x5
x6
=
x2
x5
x6
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
iff
(
x3
x5
)
(
x4
x5
)
)
⟶
33a0d..
x0
x1
x3
=
33a0d..
x0
x2
x4
(proof)
Definition
31bda..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x3
x4
x5
)
x2
)
⟶
∀ x4 :
ι → ο
.
x1
(
33a0d..
x2
x3
x4
)
)
⟶
x1
x0
Theorem
895e8..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x1
x2
x3
)
x0
)
⟶
∀ x2 :
ι → ο
.
31bda..
(
33a0d..
x0
x1
x2
)
(proof)
Theorem
efe95..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι → ο
.
31bda..
(
33a0d..
x0
x1
x2
)
⟶
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x1
x3
x4
)
x0
(proof)
Theorem
93dcd..
:
∀ x0 .
31bda..
x0
⟶
x0
=
33a0d..
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
f4846..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
4f5a1..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ο
.
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
x2
x5
x6
=
x4
x5
x6
)
⟶
∀ x5 :
ι → ο
.
(
∀ x6 .
prim1
x6
x1
⟶
iff
(
x3
x6
)
(
x5
x6
)
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
f4846..
(
33a0d..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
dcf97..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
a70e6..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ο
.
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
x2
x5
x6
=
x4
x5
x6
)
⟶
∀ x5 :
ι → ο
.
(
∀ x6 .
prim1
x6
x1
⟶
iff
(
x3
x6
)
(
x5
x6
)
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
dcf97..
(
33a0d..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
96158..
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
λ x2 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
(
If_i
(
x3
=
4ae4a..
4a7ef..
)
(
eb53d..
x0
x1
)
x2
)
)
Theorem
75497..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 .
x0
=
96158..
x1
x2
x3
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
7f6d9..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
x0
=
f482f..
(
96158..
x0
x1
x2
)
4a7ef..
(proof)
Theorem
2a2b9..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 .
x0
=
96158..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
∀ x5 .
prim1
x5
x1
⟶
x2
x4
x5
=
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x4
x5
(proof)
Theorem
9b563..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x3
x4
=
e3162..
(
f482f..
(
96158..
x0
x1
x2
)
(
4ae4a..
4a7ef..
)
)
x3
x4
(proof)
Theorem
68801..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 .
x0
=
96158..
x1
x2
x3
⟶
x3
=
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(proof)
Theorem
546ed..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
x2
=
f482f..
(
96158..
x0
x1
x2
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(proof)
Theorem
383cb..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
96158..
x0
x2
x4
=
96158..
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x2
x6
x7
=
x3
x6
x7
)
)
(
x4
=
x5
)
(proof)
Theorem
86c18..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 .
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
x1
x4
x5
=
x2
x4
x5
)
⟶
96158..
x0
x1
x3
=
96158..
x0
x2
x3
(proof)
Definition
42a91..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x3
x4
x5
)
x2
)
⟶
∀ x4 .
prim1
x4
x2
⟶
x1
(
96158..
x2
x3
x4
)
)
⟶
x1
x0
Theorem
174a4..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x1
x2
x3
)
x0
)
⟶
∀ x2 .
prim1
x2
x0
⟶
42a91..
(
96158..
x0
x1
x2
)
(proof)
Theorem
5c855..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
42a91..
(
96158..
x0
x1
x2
)
⟶
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x1
x3
x4
)
x0
(proof)
Theorem
4e086..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
42a91..
(
96158..
x0
x1
x2
)
⟶
prim1
x2
x0
(proof)
Theorem
747ef..
:
∀ x0 .
42a91..
x0
⟶
x0
=
96158..
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Definition
a6bc8..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
Theorem
28784..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 .
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
x2
x5
x6
=
x4
x5
x6
)
⟶
x0
x1
x4
x3
=
x0
x1
x2
x3
)
⟶
a6bc8..
(
96158..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
86936..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
Theorem
54d21..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ο
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 .
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x1
⟶
∀ x6 .
prim1
x6
x1
⟶
x2
x5
x6
=
x4
x5
x6
)
⟶
x0
x1
x4
x3
=
x0
x1
x2
x3
)
⟶
86936..
(
96158..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
5fdf5..
:=
λ x0 .
λ x1 x2 :
ι → ι
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
(
If_i
(
x3
=
4ae4a..
4a7ef..
)
(
0fc90..
x0
x1
)
(
0fc90..
x0
x2
)
)
)
Theorem
8dad2..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
x0
=
5fdf5..
x1
x2
x3
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
170ca..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
x0
=
f482f..
(
5fdf5..
x0
x1
x2
)
4a7ef..
(proof)
Theorem
bbd2c..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
x0
=
5fdf5..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x4
(proof)
Theorem
bbde7..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
∀ x3 .
prim1
x3
x0
⟶
x1
x3
=
f482f..
(
f482f..
(
5fdf5..
x0
x1
x2
)
(
4ae4a..
4a7ef..
)
)
x3
(proof)
Theorem
6df1c..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
x0
=
5fdf5..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
x3
x4
=
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x4
(proof)
Theorem
b49ff..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
∀ x3 .
prim1
x3
x0
⟶
x2
x3
=
f482f..
(
f482f..
(
5fdf5..
x0
x1
x2
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(proof)
Theorem
b576e..
:
∀ x0 x1 .
∀ x2 x3 x4 x5 :
ι → ι
.
5fdf5..
x0
x2
x4
=
5fdf5..
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 .
prim1
x6
x0
⟶
x2
x6
=
x3
x6
)
)
(
∀ x6 .
prim1
x6
x0
⟶
x4
x6
=
x5
x6
)
(proof)
Theorem
06bf1..
:
∀ x0 .
∀ x1 x2 x3 x4 :
ι → ι
.
(
∀ x5 .
prim1
x5
x0
⟶
x1
x5
=
x2
x5
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
x3
x5
=
x4
x5
)
⟶
5fdf5..
x0
x1
x3
=
5fdf5..
x0
x2
x4
(proof)
Definition
a3341..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
prim1
(
x3
x4
)
x2
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x4
x5
)
x2
)
⟶
x1
(
5fdf5..
x2
x3
x4
)
)
⟶
x1
x0
Theorem
b12bd..
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
x0
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x0
)
⟶
a3341..
(
5fdf5..
x0
x1
x2
)
(proof)
Theorem
b3a9c..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
a3341..
(
5fdf5..
x0
x1
x2
)
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x1
x3
)
x0
(proof)
Theorem
123df..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
a3341..
(
5fdf5..
x0
x1
x2
)
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x0
(proof)
Theorem
881bf..
:
∀ x0 .
a3341..
x0
⟶
x0
=
5fdf5..
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
adadd..
:=
λ x0 .
λ x1 :
ι →
(
ι → ι
)
→
(
ι → ι
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
85aab..
:
∀ x0 :
ι →
(
ι → ι
)
→
(
ι → ι
)
→ ι
.
∀ x1 .
∀ x2 x3 :
ι → ι
.
(
∀ x4 :
ι → ι
.
(
∀ x5 .
prim1
x5
x1
⟶
x2
x5
=
x4
x5
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
prim1
x6
x1
⟶
x3
x6
=
x5
x6
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
adadd..
(
5fdf5..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
3c64d..
:=
λ x0 .
λ x1 :
ι →
(
ι → ι
)
→
(
ι → ι
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
8aeb9..
:
∀ x0 :
ι →
(
ι → ι
)
→
(
ι → ι
)
→ ο
.
∀ x1 .
∀ x2 x3 :
ι → ι
.
(
∀ x4 :
ι → ι
.
(
∀ x5 .
prim1
x5
x1
⟶
x2
x5
=
x4
x5
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
prim1
x6
x1
⟶
x3
x6
=
x5
x6
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
3c64d..
(
5fdf5..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)