Search for blocks/addresses/...
Proofgold Asset
asset id
ef42f61ad3c4c174feeeec6a5597c68692d09542f7a72ba60620bf33bad558fe
asset hash
0e51138a30b3d021b6db24f8575b42465be63704d913d2babc2d1e5a27859b1a
bday / block
18009
tx
603d5..
preasset
doc published by
Pr4zB..
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Definition
u7
:=
ordsucc
u6
Definition
u8
:=
ordsucc
u7
Definition
u9
:=
ordsucc
u8
Definition
u10
:=
ordsucc
u9
Definition
u11
:=
ordsucc
u10
Definition
u12
:=
ordsucc
u11
Definition
u13
:=
ordsucc
u12
Known
neq_1_0
neq_1_0
:
u1
=
0
⟶
∀ x0 : ο .
x0
Theorem
neq_1_0
neq_1_0
:
u1
=
0
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_2_0
neq_2_0
:
u2
=
0
⟶
∀ x0 : ο .
x0
Theorem
neq_2_0
neq_2_0
:
u2
=
0
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_2_1
neq_2_1
:
u2
=
u1
⟶
∀ x0 : ο .
x0
Theorem
neq_2_1
neq_2_1
:
u2
=
u1
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_3_0
neq_3_0
:
u3
=
0
⟶
∀ x0 : ο .
x0
Theorem
neq_3_0
neq_3_0
:
u3
=
0
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_3_1
neq_3_1
:
u3
=
u1
⟶
∀ x0 : ο .
x0
Theorem
neq_3_1
neq_3_1
:
u3
=
u1
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_3_2
neq_3_2
:
u3
=
u2
⟶
∀ x0 : ο .
x0
Theorem
neq_3_2
neq_3_2
:
u3
=
u2
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_4_0
neq_4_0
:
u4
=
0
⟶
∀ x0 : ο .
x0
Theorem
neq_4_0
neq_4_0
:
u4
=
0
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_4_1
neq_4_1
:
u4
=
u1
⟶
∀ x0 : ο .
x0
Theorem
neq_4_1
neq_4_1
:
u4
=
u1
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_4_2
neq_4_2
:
u4
=
u2
⟶
∀ x0 : ο .
x0
Theorem
neq_4_2
neq_4_2
:
u4
=
u2
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_4_3
neq_4_3
:
u4
=
u3
⟶
∀ x0 : ο .
x0
Theorem
neq_4_3
neq_4_3
:
u4
=
u3
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_5_0
neq_5_0
:
u5
=
0
⟶
∀ x0 : ο .
x0
Theorem
neq_5_0
neq_5_0
:
u5
=
0
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_5_1
neq_5_1
:
u5
=
u1
⟶
∀ x0 : ο .
x0
Theorem
neq_5_1
neq_5_1
:
u5
=
u1
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_5_2
neq_5_2
:
u5
=
u2
⟶
∀ x0 : ο .
x0
Theorem
neq_5_2
neq_5_2
:
u5
=
u2
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_5_3
neq_5_3
:
u5
=
u3
⟶
∀ x0 : ο .
x0
Theorem
neq_5_3
neq_5_3
:
u5
=
u3
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_5_4
neq_5_4
:
u5
=
u4
⟶
∀ x0 : ο .
x0
Theorem
neq_5_4
neq_5_4
:
u5
=
u4
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_6_0
neq_6_0
:
u6
=
0
⟶
∀ x0 : ο .
x0
Theorem
neq_6_0
neq_6_0
:
u6
=
0
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_6_1
neq_6_1
:
u6
=
u1
⟶
∀ x0 : ο .
x0
Theorem
neq_6_1
neq_6_1
:
u6
=
u1
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_6_2
neq_6_2
:
u6
=
u2
⟶
∀ x0 : ο .
x0
Theorem
neq_6_2
neq_6_2
:
u6
=
u2
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_6_3
neq_6_3
:
u6
=
u3
⟶
∀ x0 : ο .
x0
Theorem
neq_6_3
neq_6_3
:
u6
=
u3
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_6_4
neq_6_4
:
u6
=
u4
⟶
∀ x0 : ο .
x0
Theorem
neq_6_4
neq_6_4
:
u6
=
u4
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_6_5
neq_6_5
:
u6
=
u5
⟶
∀ x0 : ο .
x0
Theorem
neq_6_5
neq_6_5
:
u6
=
u5
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_7_0
neq_7_0
:
u7
=
0
⟶
∀ x0 : ο .
x0
Theorem
neq_7_0
neq_7_0
:
u7
=
0
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_7_1
neq_7_1
:
u7
=
u1
⟶
∀ x0 : ο .
x0
Theorem
neq_7_1
neq_7_1
:
u7
=
u1
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_7_2
neq_7_2
:
u7
=
u2
⟶
∀ x0 : ο .
x0
Theorem
neq_7_2
neq_7_2
:
u7
=
u2
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_7_3
neq_7_3
:
u7
=
u3
⟶
∀ x0 : ο .
x0
Theorem
neq_7_3
neq_7_3
:
u7
=
u3
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_7_4
neq_7_4
:
u7
=
u4
⟶
∀ x0 : ο .
x0
Theorem
neq_7_4
neq_7_4
:
u7
=
u4
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_7_5
neq_7_5
:
u7
=
u5
⟶
∀ x0 : ο .
x0
Theorem
neq_7_5
neq_7_5
:
u7
=
u5
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_7_6
neq_7_6
:
u7
=
u6
⟶
∀ x0 : ο .
x0
Theorem
neq_7_6
neq_7_6
:
u7
=
u6
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_8_0
neq_8_0
:
u8
=
0
⟶
∀ x0 : ο .
x0
Theorem
neq_8_0
neq_8_0
:
u8
=
0
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_8_1
neq_8_1
:
u8
=
u1
⟶
∀ x0 : ο .
x0
Theorem
neq_8_1
neq_8_1
:
u8
=
u1
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_8_2
neq_8_2
:
u8
=
u2
⟶
∀ x0 : ο .
x0
Theorem
neq_8_2
neq_8_2
:
u8
=
u2
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_8_3
neq_8_3
:
u8
=
u3
⟶
∀ x0 : ο .
x0
Theorem
neq_8_3
neq_8_3
:
u8
=
u3
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_8_4
neq_8_4
:
u8
=
u4
⟶
∀ x0 : ο .
x0
Theorem
neq_8_4
neq_8_4
:
u8
=
u4
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_8_5
neq_8_5
:
u8
=
u5
⟶
∀ x0 : ο .
x0
Theorem
neq_8_5
neq_8_5
:
u8
=
u5
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_8_6
neq_8_6
:
u8
=
u6
⟶
∀ x0 : ο .
x0
Theorem
neq_8_6
neq_8_6
:
u8
=
u6
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_8_7
neq_8_7
:
u8
=
u7
⟶
∀ x0 : ο .
x0
Theorem
neq_8_7
neq_8_7
:
u8
=
u7
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_9_0
neq_9_0
:
u9
=
0
⟶
∀ x0 : ο .
x0
Theorem
neq_9_0
neq_9_0
:
u9
=
0
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_9_1
neq_9_1
:
u9
=
u1
⟶
∀ x0 : ο .
x0
Theorem
neq_9_1
neq_9_1
:
u9
=
u1
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_9_2
neq_9_2
:
u9
=
u2
⟶
∀ x0 : ο .
x0
Theorem
neq_9_2
neq_9_2
:
u9
=
u2
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_9_3
neq_9_3
:
u9
=
u3
⟶
∀ x0 : ο .
x0
Theorem
neq_9_3
neq_9_3
:
u9
=
u3
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_9_4
neq_9_4
:
u9
=
u4
⟶
∀ x0 : ο .
x0
Theorem
neq_9_4
neq_9_4
:
u9
=
u4
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_9_5
neq_9_5
:
u9
=
u5
⟶
∀ x0 : ο .
x0
Theorem
neq_9_5
neq_9_5
:
u9
=
u5
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_9_6
neq_9_6
:
u9
=
u6
⟶
∀ x0 : ο .
x0
Theorem
neq_9_6
neq_9_6
:
u9
=
u6
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_9_7
neq_9_7
:
u9
=
u7
⟶
∀ x0 : ο .
x0
Theorem
neq_9_7
neq_9_7
:
u9
=
u7
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_9_8
neq_9_8
:
u9
=
u8
⟶
∀ x0 : ο .
x0
Theorem
neq_9_8
neq_9_8
:
u9
=
u8
⟶
∀ x0 : ο .
x0
(proof)
Known
neq_ordsucc_0
neq_ordsucc_0
:
∀ x0 .
ordsucc
x0
=
0
⟶
∀ x1 : ο .
x1
Theorem
0e10e..
:
u10
=
0
⟶
∀ x0 : ο .
x0
(proof)
Known
ordsucc_inj_contra
ordsucc_inj_contra
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
ordsucc
x0
=
ordsucc
x1
⟶
∀ x2 : ο .
x2
Theorem
d183f..
:
u10
=
u1
⟶
∀ x0 : ο .
x0
(proof)
Theorem
e02d9..
:
u10
=
u2
⟶
∀ x0 : ο .
x0
(proof)
Theorem
68152..
:
u10
=
u3
⟶
∀ x0 : ο .
x0
(proof)
Theorem
33d16..
:
u10
=
u4
⟶
∀ x0 : ο .
x0
(proof)
Theorem
a7d50..
:
u10
=
u5
⟶
∀ x0 : ο .
x0
(proof)
Theorem
d0401..
:
u10
=
u6
⟶
∀ x0 : ο .
x0
(proof)
Theorem
7d7a8..
:
u10
=
u7
⟶
∀ x0 : ο .
x0
(proof)
Theorem
96175..
:
u10
=
u8
⟶
∀ x0 : ο .
x0
(proof)
Theorem
4fc31..
:
u10
=
u9
⟶
∀ x0 : ο .
x0
(proof)
Theorem
19f75..
:
u11
=
0
⟶
∀ x0 : ο .
x0
(proof)
Theorem
618f7..
:
u11
=
u1
⟶
∀ x0 : ο .
x0
(proof)
Theorem
2c42c..
:
u11
=
u2
⟶
∀ x0 : ο .
x0
(proof)
Theorem
b06e1..
:
u11
=
u3
⟶
∀ x0 : ο .
x0
(proof)
Theorem
6a6f1..
:
u11
=
u4
⟶
∀ x0 : ο .
x0
(proof)
Theorem
1b659..
:
u11
=
u5
⟶
∀ x0 : ο .
x0
(proof)
Theorem
949f2..
:
u11
=
u6
⟶
∀ x0 : ο .
x0
(proof)
Theorem
4abfa..
:
u11
=
u7
⟶
∀ x0 : ο .
x0
(proof)
Theorem
b3a20..
:
u11
=
u8
⟶
∀ x0 : ο .
x0
(proof)
Theorem
4f03f..
:
u11
=
u9
⟶
∀ x0 : ο .
x0
(proof)
Theorem
ebfb7..
:
u11
=
u10
⟶
∀ x0 : ο .
x0
(proof)
Theorem
efdfc..
:
u12
=
0
⟶
∀ x0 : ο .
x0
(proof)
Theorem
ce0cd..
:
u12
=
u1
⟶
∀ x0 : ο .
x0
(proof)
Theorem
8158b..
:
u12
=
u2
⟶
∀ x0 : ο .
x0
(proof)
Theorem
e015c..
:
u12
=
u3
⟶
∀ x0 : ο .
x0
(proof)
Theorem
7aa79..
:
u12
=
u4
⟶
∀ x0 : ο .
x0
(proof)
Theorem
07eba..
:
u12
=
u5
⟶
∀ x0 : ο .
x0
(proof)
Theorem
0bd83..
:
u12
=
u6
⟶
∀ x0 : ο .
x0
(proof)
Theorem
6a15f..
:
u12
=
u7
⟶
∀ x0 : ο .
x0
(proof)
Theorem
a6a6c..
:
u12
=
u8
⟶
∀ x0 : ο .
x0
(proof)
Theorem
22885..
:
u12
=
u9
⟶
∀ x0 : ο .
x0
(proof)
Theorem
6c583..
:
u12
=
u10
⟶
∀ x0 : ο .
x0
(proof)
Theorem
ab306..
:
u12
=
u11
⟶
∀ x0 : ο .
x0
(proof)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
cases_9
cases_9
:
∀ x0 .
x0
∈
9
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
4
⟶
x1
5
⟶
x1
6
⟶
x1
7
⟶
x1
8
⟶
x1
x0
Theorem
44418..
:
∀ x0 .
x0
∈
u10
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
x0
(proof)
Theorem
83484..
:
∀ x0 .
x0
∈
u11
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
x0
(proof)
Theorem
866c8..
:
∀ x0 .
x0
∈
u12
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
x0
(proof)
Theorem
6de8d..
:
∀ x0 .
x0
∈
u13
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
x0
(proof)