Search for blocks/addresses/...
Proofgold Asset
asset id
efd4f3a6af906d69ccdded2eab6b356353796fb5b7a0d9177eabbf0ad4f2bf79
asset hash
4861175ec53279035d107537775b12a402fc393538fd2b2a45e447e479342c8f
bday / block
11789
tx
c0143..
preasset
doc published by
PrGVS..
Theorem
9406c..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
In
x2
x0
⟶
∀ x3 .
In
x3
x0
⟶
In
(
x1
x2
x3
)
x0
)
⟶
∀ x2 :
ι →
ι →
ι → ι
.
(
∀ x3 .
In
x3
x0
⟶
∀ x4 .
In
x4
x0
⟶
∀ x5 .
In
x5
x0
⟶
In
(
x2
x3
x4
x5
)
x0
)
⟶
∀ x3 .
In
x3
x0
⟶
∀ x4 .
In
x4
x0
⟶
∀ x5 :
ι →
ι → ι
.
(
∀ x6 .
In
x6
x0
⟶
∀ x7 .
In
x7
x0
⟶
In
(
x5
x6
x7
)
x0
)
⟶
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
In
x7
x0
⟶
∀ x8 .
In
x8
x0
⟶
In
(
x6
x7
x8
)
x0
)
⟶
∀ x7 .
In
x7
x0
⟶
∀ x8 :
ι →
ι → ι
.
(
∀ x9 .
In
x9
x0
⟶
∀ x10 .
In
x10
x0
⟶
In
(
x8
x9
x10
)
x0
)
⟶
(
∀ x9 .
In
x9
x0
⟶
(
x8
x7
x9
=
x9
⟶
False
)
⟶
False
)
⟶
(
∀ x9 .
In
x9
x0
⟶
(
x8
x9
x7
=
x9
⟶
False
)
⟶
False
)
⟶
(
∀ x9 .
In
x9
x0
⟶
∀ x10 .
In
x10
x0
⟶
(
x6
x9
(
x8
x9
x10
)
=
x10
⟶
False
)
⟶
False
)
⟶
(
∀ x9 .
In
x9
x0
⟶
∀ x10 .
In
x10
x0
⟶
(
x1
x9
x10
=
x8
(
x6
x9
x10
)
(
x6
(
x6
x9
x7
)
x7
)
⟶
False
)
⟶
False
)
⟶
(
∀ x9 .
In
x9
x0
⟶
(
x6
x7
x9
=
x9
⟶
False
)
⟶
False
)
⟶
(
∀ x9 .
In
x9
x0
⟶
(
x6
x9
x9
=
x7
⟶
False
)
⟶
False
)
⟶
(
∀ x9 .
In
x9
x0
⟶
(
x5
x7
x9
=
x9
⟶
False
)
⟶
False
)
⟶
(
∀ x9 .
In
x9
x0
⟶
∀ x10 .
In
x10
x0
⟶
(
x2
x7
x9
x10
=
x10
⟶
False
)
⟶
False
)
⟶
(
∀ x9 .
In
x9
x0
⟶
∀ x10 .
In
x10
x0
⟶
(
x2
x9
x7
x10
=
x10
⟶
False
)
⟶
False
)
⟶
(
∀ x9 .
In
x9
x0
⟶
∀ x10 .
In
x10
x0
⟶
∀ x11 .
In
x11
x0
⟶
∀ x12 .
In
x12
x0
⟶
(
x2
x9
x11
(
x1
x10
(
x1
x9
(
x2
x11
x10
(
x2
x9
x11
(
x1
x10
(
x1
x9
(
x2
x11
x10
(
x2
x9
x11
(
x1
x10
(
x1
x9
(
x2
x11
x10
(
x2
x9
x11
(
x1
x10
(
x1
x9
(
x2
x11
x10
(
x2
x9
x11
(
x1
x10
(
x1
x9
(
x2
x11
x10
x12
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
x12
⟶
False
)
⟶
False
)
⟶
(
∀ x9 .
In
x9
x0
⟶
∀ x10 .
In
x10
x0
⟶
∀ x11 .
In
x11
x0
⟶
(
x2
x9
x10
(
x1
x9
(
x5
x10
(
x2
x9
x10
(
x1
x9
(
x5
x10
x11
)
)
)
)
)
=
x11
⟶
False
)
⟶
False
)
⟶
(
x8
x3
x4
=
x8
x4
x3
⟶
False
)
⟶
False
(proof)
Known
b5371..
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
In
x4
x0
⟶
(
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
In
(
x1
x14
x15
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
In
(
x2
x14
x15
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
In
(
x3
x14
x15
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
In
(
x7
x14
x15
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
In
(
x8
x14
x15
x16
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
In
(
x9
x14
x15
x16
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
In
(
x10
x14
x15
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
In
(
x11
x14
x15
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
In
(
x12
x14
x15
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
In
(
x13
x14
x15
)
x0
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x1
x4
x14
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x1
x14
x4
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x2
x14
(
x1
x14
x15
)
=
x15
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x1
x14
(
x2
x14
x15
)
=
x15
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x3
(
x1
x14
x15
)
x15
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x1
(
x3
x14
x15
)
x15
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x1
x14
x15
=
x1
x14
x16
⟶
x15
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x1
x14
x15
=
x1
x16
x15
⟶
x14
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x5
x14
x15
=
x2
(
x1
x15
x14
)
(
x1
x14
x15
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x6
x14
x15
x16
=
x2
(
x1
x14
(
x1
x15
x16
)
)
(
x1
(
x1
x14
x15
)
x16
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x7
x14
x15
=
x2
x14
(
x1
x15
x14
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x10
x14
x15
=
x1
x14
(
x1
x15
(
x2
x14
x4
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x11
x14
x15
=
x1
(
x1
(
x3
x4
x14
)
x15
)
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x12
x14
x15
=
x1
(
x2
x14
x15
)
(
x2
(
x2
x14
x4
)
x4
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x13
x14
x15
=
x1
(
x3
x4
(
x3
x4
x14
)
)
(
x3
x15
x14
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x8
x14
x15
x16
=
x2
(
x1
x15
x14
)
(
x1
x15
(
x1
x14
x16
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x9
x14
x15
x16
=
x3
(
x1
(
x1
x16
x14
)
x15
)
(
x1
x14
x15
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x2
x4
x14
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x2
x14
x14
=
x4
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x3
x14
x4
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x3
x14
x14
=
x4
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x7
x4
x14
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x10
x4
x14
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x11
x4
x14
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x12
x4
x14
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
x13
x4
x14
=
x14
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x8
x4
x14
x15
=
x15
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x8
x14
x4
x15
=
x15
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x9
x4
x14
x15
=
x15
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x9
x14
x4
x15
=
x15
)
⟶
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
x1
x14
x15
=
x1
x15
x14
)
⟶
False
Known
b4782..
contra
:
∀ x0 : ο .
(
not
x0
⟶
False
)
⟶
x0
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Theorem
5fb94..
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
In
x4
x0
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x14
(
x9
x15
x16
(
x9
x14
x15
(
x12
x16
(
x12
x14
(
x9
x15
x16
(
x9
x14
x15
(
x12
x16
(
x12
x14
(
x9
x15
x16
(
x9
x14
x15
(
x12
x16
(
x12
x14
(
x9
x15
x16
(
x9
x14
x15
(
x12
x16
(
x12
x14
(
x9
x15
x16
x17
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
x17
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x9
x14
x15
(
x12
x14
(
x7
x15
(
x9
x14
x15
(
x12
x14
(
x7
x15
x16
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x12
x14
(
x12
x15
(
x12
x16
x17
)
)
=
x12
x15
(
x12
x16
(
x12
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x8
x14
x15
(
x10
x16
(
x7
x17
x18
)
)
=
x10
x16
(
x7
x17
(
x8
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x7
x14
(
x7
x15
(
x13
x16
(
x12
x17
x18
)
)
)
=
x13
x16
(
x12
x17
(
x7
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x7
x15
(
x12
x16
(
x10
x17
x18
)
)
)
=
x12
x16
(
x10
x17
(
x10
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x10
x16
(
x10
x17
x18
)
)
)
=
x10
x16
(
x10
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x7
x16
(
x10
x17
x18
)
)
)
=
x7
x16
(
x10
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x7
x15
(
x12
x16
(
x10
x17
x18
)
)
)
=
x12
x16
(
x10
x17
(
x12
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x9
x14
x15
(
x7
x16
(
x12
x17
(
x7
x18
x19
)
)
)
=
x12
x17
(
x7
x18
(
x9
x14
x15
(
x7
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x7
x18
x19
)
)
)
=
x12
x17
(
x7
x18
(
x8
x14
x15
(
x12
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x12
x16
(
x8
x17
x18
(
x7
x19
x20
)
)
)
=
x8
x17
x18
(
x7
x19
(
x8
x14
x15
(
x12
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x7
x16
(
x9
x17
x18
(
x12
x19
x20
)
)
)
=
x9
x17
x18
(
x12
x19
(
x8
x14
x15
(
x7
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x12
x17
(
x9
x18
x19
(
x10
x20
x21
)
)
)
)
=
x9
x18
x19
(
x10
x20
(
x9
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x8
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x13
x16
(
x12
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x8
x14
x15
(
x13
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x10
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x13
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x13
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x7
x17
(
x9
x18
x19
(
x12
x20
x21
)
)
)
)
=
x9
x18
x19
(
x12
x20
(
x9
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
False
(proof)