Search for blocks/addresses/...

Proofgold Asset

asset id
0166b82e317c104222cae2f9f16dbe6a569dbff2f8873d01f11b8eda39cc2bf0
asset hash
f1d37babfb9c53a6c220a831633e236608e814e9bd4a9a33f9317104ca6d48dd
bday / block
20245
tx
47ff4..
preasset
doc published by Pr4zB..
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition injinj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)
Definition atleastpatleastp := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . inj x0 x1 x3x2)x2
Param ordsuccordsucc : ιι
Definition u1 := 1
Definition u2 := ordsucc u1
Definition u3 := ordsucc u2
Definition u4 := ordsucc u3
Definition u5 := ordsucc u4
Definition u6 := ordsucc u5
Known 3ed86.. : ∀ x0 . atleastp u5 x0∀ x1 : ο . (∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0(x2 = x3∀ x7 : ο . x7)(x2 = x4∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x2 = x6∀ x7 : ο . x7)(x3 = x4∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x3 = x6∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)(x4 = x6∀ x7 : ο . x7)(x5 = x6∀ x7 : ο . x7)x1)x1
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known FalseEFalseE : False∀ x0 : ο . x0
Param nat_pnat_p : ιο
Known 4fb58..Pigeonhole_not_atleastp_ordsucc : ∀ x0 . nat_p x0not (atleastp (ordsucc x0) x0)
Known nat_5nat_5 : nat_p 5
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Param apap : ιιι
Param lamSigma : ι(ιι) → ι
Param If_iIf_i : οιιι
Param invinv : ι(ιι) → ιι
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known surj_rinvsurj_rinv : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)∀ x3 . x3x1and (inv x0 x2 x3x0) (x2 (inv x0 x2 x3) = x3)
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Known In_0_5In_0_5 : 05
Known tuple_5_0_eqtuple_5_0_eq : ∀ x0 x1 x2 x3 x4 . ap (lam 5 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) x1 (If_i (x6 = 2) x2 (If_i (x6 = 3) x3 x4))))) 0 = x0
Known In_1_5In_1_5 : 15
Known tuple_5_1_eqtuple_5_1_eq : ∀ x0 x1 x2 x3 x4 . ap (lam 5 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) x1 (If_i (x6 = 2) x2 (If_i (x6 = 3) x3 x4))))) 1 = x1
Known In_2_5In_2_5 : 25
Known tuple_5_2_eqtuple_5_2_eq : ∀ x0 x1 x2 x3 x4 . ap (lam 5 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) x1 (If_i (x6 = 2) x2 (If_i (x6 = 3) x3 x4))))) 2 = x2
Known In_3_5In_3_5 : 35
Known tuple_5_3_eqtuple_5_3_eq : ∀ x0 x1 x2 x3 x4 . ap (lam 5 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) x1 (If_i (x6 = 2) x2 (If_i (x6 = 3) x3 x4))))) 3 = x3
Known In_4_5In_4_5 : 45
Known tuple_5_4_eqtuple_5_4_eq : ∀ x0 x1 x2 x3 x4 . ap (lam 5 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) x1 (If_i (x6 = 2) x2 (If_i (x6 = 3) x3 x4))))) 4 = x4
Known nat_In_atleastp : ∀ x0 . nat_p x0∀ x1 . x1x0atleastp x1 x0
Known nat_6nat_6 : nat_p 6
Known In_5_6In_5_6 : u5u6
Theorem a753e.. : ∀ x0 . atleastp u6 x0∀ x1 : ο . (∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0(x2 = x3∀ x8 : ο . x8)(x2 = x4∀ x8 : ο . x8)(x2 = x5∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x2 = x7∀ x8 : ο . x8)(x3 = x4∀ x8 : ο . x8)(x3 = x5∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x3 = x7∀ x8 : ο . x8)(x4 = x5∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x4 = x7∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)(x5 = x7∀ x8 : ο . x8)(x6 = x7∀ x8 : ο . x8)x1)x1 (proof)
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Definition TwoRamseyProp_atleastp := λ x0 x1 x2 . ∀ x3 : ι → ι → ο . (∀ x4 x5 . x3 x4 x5x3 x5 x4)or (∀ x4 : ο . (∀ x5 . and (x5x2) (and (atleastp x0 x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)x3 x6 x7))x4)x4) (∀ x4 : ο . (∀ x5 . and (x5x2) (and (atleastp x1 x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)not (x3 x6 x7)))x4)x4)
Param setminussetminus : ιιι
Definition setprodsetprod := λ x0 x1 . lam x0 (λ x2 . x1)
Param SingSing : ιι
Known tuple_2_1_eqtuple_2_1_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 1 = x1
Known tuple_2_0_eqtuple_2_0_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 0 = x0
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known ap1_Sigmaap1_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 1x1 (ap x2 0)
Known setminusE1setminusE1 : ∀ x0 x1 x2 . x2setminus x0 x1x2x0
Known ap0_Sigmaap0_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 0x0
Definition nInnIn := λ x0 x1 . not (x0x1)
Known setminusE2setminusE2 : ∀ x0 x1 x2 . x2setminus x0 x1nIn x2 x1
Known SingISingI : ∀ x0 . x0Sing x0
Known tuple_Sigma_etatuple_Sigma_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1lam 2 (λ x4 . If_i (x4 = 0) (ap x2 0) (ap x2 1)) = x2
Known d03c6.. : ∀ x0 . atleastp u4 x0∀ x1 : ο . (∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0(x2 = x3∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x2 = x5∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)(x3 = x5∀ x6 : ο . x6)(x4 = x5∀ x6 : ο . x6)x1)x1
Theorem 3ebe9.. : ∀ x0 x1 : ι → ι → ι → ι → ο . (∀ x2 x3 x4 x5 . x0 x2 x3 x4 x5x0 x4 x5 x2 x3)(∀ x2 . x2u6∀ x3 . x3u6not (x0 x2 x3 x2 x3))(∀ x2 . x2u6∀ x3 . x3u6x1 x2 x3 x2 x3)(∀ x2 . x2u6∀ x3 . x3u6∀ x4 . x4u6∀ x5 . x5u6(x2 = u5x3 = u5False)(x4 = u5x5 = u5False)x0 x2 x3 x4 x5x1 x2 x3 x4 x5)(∀ x2 . x2u6∀ x3 . x3u6∀ x4 . x4u6∀ x5 . x5u6(x2 = u5x3 = u5False)(x4 = u5x5 = u5False)(x2 = x4x3 = x5False)x1 x2 x3 x4 x5x0 x2 x3 x4 x5)(∀ x2 . x2u6∀ x3 . x3u6∀ x4 . x4u6∀ x5 . x5u6∀ x6 . x6u6∀ x7 . x7u6∀ x8 . x8u6∀ x9 . x9u6x0 x2 x3 x4 x5x0 x2 x3 x6 x7x0 x2 x3 x8 x9x0 x4 x5 x6 x7x0 x4 x5 x8 x9x0 x6 x7 x8 x9False)(∀ x2 . x2u6∀ x3 . x3u6∀ x4 . x4u6∀ x5 . x5u6∀ x6 . x6u6∀ x7 . x7u6∀ x8 . x8u6∀ x9 . x9u6∀ x10 . x10u6∀ x11 . x11u6∀ x12 . x12u6∀ x13 . x13u6not (x1 x2 x3 x4 x5)not (x1 x2 x3 x6 x7)not (x1 x2 x3 x8 x9)not (x1 x2 x3 x10 x11)not (x1 x2 x3 x12 x13)not (x1 x4 x5 x6 x7)not (x1 x4 x5 x8 x9)not (x1 x4 x5 x10 x11)not (x1 x4 x5 x12 x13)not (x1 x6 x7 x8 x9)not (x1 x6 x7 x10 x11)not (x1 x6 x7 x12 x13)not (x1 x8 x9 x10 x11)not (x1 x8 x9 x12 x13)not (x1 x10 x11 x12 x13)False)not (TwoRamseyProp_atleastp u4 u6 (setminus (setprod u6 u6) (Sing (lam 2 (λ x2 . If_i (x2 = 0) u5 u5))))) (proof)
Param TwoRamseyPropTwoRamseyProp : ιιιο
Definition u7 := ordsucc u6
Definition u8 := ordsucc u7
Definition u9 := ordsucc u8
Definition u10 := ordsucc u9
Definition u11 := ordsucc u10
Definition u12 := ordsucc u11
Definition u13 := ordsucc u12
Definition u14 := ordsucc u13
Definition u15 := ordsucc u14
Definition u16 := ordsucc u15
Definition u17 := ordsucc u16
Definition u18 := ordsucc u17
Definition u19 := ordsucc u18
Definition u20 := ordsucc u19
Definition u21 := ordsucc u20
Definition u22 := ordsucc u21
Definition u23 := ordsucc u22
Definition u24 := ordsucc u23
Definition u25 := ordsucc u24
Definition u26 := ordsucc u25
Definition u27 := ordsucc u26
Definition u28 := ordsucc u27
Definition u29 := ordsucc u28
Definition u30 := ordsucc u29
Definition u31 := ordsucc u30
Definition u32 := ordsucc u31
Definition u33 := ordsucc u32
Definition u34 := ordsucc u33
Definition u35 := ordsucc u34
Known TwoRamseyProp_atleastp_atleastp : ∀ x0 x1 x2 x3 x4 . TwoRamseyProp x0 x2 x4atleastp x1 x0atleastp x3 x2TwoRamseyProp_atleastp x1 x3 x4
Known atleastp_ref : ∀ x0 . atleastp x0 x0
Known 46dcf.. : ∀ x0 x1 x2 x3 . atleastp x2 x3TwoRamseyProp x0 x1 x2TwoRamseyProp x0 x1 x3
Param equipequip : ιιο
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Known 903ea.. : equip (setminus (setprod u6 u6) (Sing (lam 2 (λ x0 . If_i (x0 = 0) u5 u5)))) u35
Theorem df3e1.. : ∀ x0 x1 : ι → ι → ι → ι → ο . (∀ x2 x3 x4 x5 . x0 x2 x3 x4 x5x0 x4 x5 x2 x3)(∀ x2 . x2u6∀ x3 . x3u6not (x0 x2 x3 x2 x3))(∀ x2 . x2u6∀ x3 . x3u6x1 x2 x3 x2 x3)(∀ x2 . x2u6∀ x3 . x3u6∀ x4 . x4u6∀ x5 . x5u6(x2 = u5x3 = u5False)(x4 = u5x5 = u5False)x0 x2 x3 x4 x5x1 x2 x3 x4 x5)(∀ x2 . x2u6∀ x3 . x3u6∀ x4 . x4u6∀ x5 . x5u6(x2 = u5x3 = u5False)(x4 = u5x5 = u5False)(x2 = x4x3 = x5False)x1 x2 x3 x4 x5x0 x2 x3 x4 x5)(∀ x2 . x2u6∀ x3 . x3u6∀ x4 . x4u6∀ x5 . x5u6∀ x6 . x6u6∀ x7 . x7u6∀ x8 . x8u6∀ x9 . x9u6x0 x2 x3 x4 x5x0 x2 x3 x6 x7x0 x2 x3 x8 x9x0 x4 x5 x6 x7x0 x4 x5 x8 x9x0 x6 x7 x8 x9False)(∀ x2 . x2u6∀ x3 . x3u6∀ x4 . x4u6∀ x5 . x5u6∀ x6 . x6u6∀ x7 . x7u6∀ x8 . x8u6∀ x9 . x9u6∀ x10 . x10u6∀ x11 . x11u6∀ x12 . x12u6∀ x13 . x13u6not (x1 x2 x3 x4 x5)not (x1 x2 x3 x6 x7)not (x1 x2 x3 x8 x9)not (x1 x2 x3 x10 x11)not (x1 x2 x3 x12 x13)not (x1 x4 x5 x6 x7)not (x1 x4 x5 x8 x9)not (x1 x4 x5 x10 x11)not (x1 x4 x5 x12 x13)not (x1 x6 x7 x8 x9)not (x1 x6 x7 x10 x11)not (x1 x6 x7 x12 x13)not (x1 x8 x9 x10 x11)not (x1 x8 x9 x12 x13)not (x1 x10 x11 x12 x13)False)not (TwoRamseyProp 4 6 35) (proof)