Search for blocks/addresses/...
Proofgold Asset
asset id
0166b82e317c104222cae2f9f16dbe6a569dbff2f8873d01f11b8eda39cc2bf0
asset hash
f1d37babfb9c53a6c220a831633e236608e814e9bd4a9a33f9317104ca6d48dd
bday / block
20245
tx
47ff4..
preasset
doc published by
Pr4zB..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
inj
inj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Definition
atleastp
atleastp
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
inj
x0
x1
x3
⟶
x2
)
⟶
x2
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Known
3ed86..
:
∀ x0 .
atleastp
u5
x0
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
(
x2
=
x3
⟶
∀ x7 : ο .
x7
)
⟶
(
x2
=
x4
⟶
∀ x7 : ο .
x7
)
⟶
(
x2
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x2
=
x6
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x4
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x6
⟶
∀ x7 : ο .
x7
)
⟶
(
x4
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x4
=
x6
⟶
∀ x7 : ο .
x7
)
⟶
(
x5
=
x6
⟶
∀ x7 : ο .
x7
)
⟶
x1
)
⟶
x1
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Param
nat_p
nat_p
:
ι
→
ο
Known
4fb58..
Pigeonhole_not_atleastp_ordsucc
:
∀ x0 .
nat_p
x0
⟶
not
(
atleastp
(
ordsucc
x0
)
x0
)
Known
nat_5
nat_5
:
nat_p
5
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Param
ap
ap
:
ι
→
ι
→
ι
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Param
inv
inv
:
ι
→
(
ι
→
ι
) →
ι
→
ι
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
surj_rinv
surj_rinv
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
∀ x3 .
x3
∈
x1
⟶
and
(
inv
x0
x2
x3
∈
x0
)
(
x2
(
inv
x0
x2
x3
)
=
x3
)
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
In_0_5
In_0_5
:
0
∈
5
Known
tuple_5_0_eq
tuple_5_0_eq
:
∀ x0 x1 x2 x3 x4 .
ap
(
lam
5
(
λ x6 .
If_i
(
x6
=
0
)
x0
(
If_i
(
x6
=
1
)
x1
(
If_i
(
x6
=
2
)
x2
(
If_i
(
x6
=
3
)
x3
x4
)
)
)
)
)
0
=
x0
Known
In_1_5
In_1_5
:
1
∈
5
Known
tuple_5_1_eq
tuple_5_1_eq
:
∀ x0 x1 x2 x3 x4 .
ap
(
lam
5
(
λ x6 .
If_i
(
x6
=
0
)
x0
(
If_i
(
x6
=
1
)
x1
(
If_i
(
x6
=
2
)
x2
(
If_i
(
x6
=
3
)
x3
x4
)
)
)
)
)
1
=
x1
Known
In_2_5
In_2_5
:
2
∈
5
Known
tuple_5_2_eq
tuple_5_2_eq
:
∀ x0 x1 x2 x3 x4 .
ap
(
lam
5
(
λ x6 .
If_i
(
x6
=
0
)
x0
(
If_i
(
x6
=
1
)
x1
(
If_i
(
x6
=
2
)
x2
(
If_i
(
x6
=
3
)
x3
x4
)
)
)
)
)
2
=
x2
Known
In_3_5
In_3_5
:
3
∈
5
Known
tuple_5_3_eq
tuple_5_3_eq
:
∀ x0 x1 x2 x3 x4 .
ap
(
lam
5
(
λ x6 .
If_i
(
x6
=
0
)
x0
(
If_i
(
x6
=
1
)
x1
(
If_i
(
x6
=
2
)
x2
(
If_i
(
x6
=
3
)
x3
x4
)
)
)
)
)
3
=
x3
Known
In_4_5
In_4_5
:
4
∈
5
Known
tuple_5_4_eq
tuple_5_4_eq
:
∀ x0 x1 x2 x3 x4 .
ap
(
lam
5
(
λ x6 .
If_i
(
x6
=
0
)
x0
(
If_i
(
x6
=
1
)
x1
(
If_i
(
x6
=
2
)
x2
(
If_i
(
x6
=
3
)
x3
x4
)
)
)
)
)
4
=
x4
Known
nat_In_atleastp
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
atleastp
x1
x0
Known
nat_6
nat_6
:
nat_p
6
Known
In_5_6
In_5_6
:
u5
∈
u6
Theorem
a753e..
:
∀ x0 .
atleastp
u6
x0
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
(
x2
=
x3
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x4
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x5
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x4
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x5
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x5
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
x1
)
⟶
x1
(proof)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Definition
TwoRamseyProp_atleastp
:=
λ x0 x1 x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 x5 .
x3
x4
x5
⟶
x3
x5
x4
)
⟶
or
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
atleastp
x0
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
x3
x6
x7
)
)
⟶
x4
)
⟶
x4
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
atleastp
x1
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x3
x6
x7
)
)
)
⟶
x4
)
⟶
x4
)
Param
setminus
setminus
:
ι
→
ι
→
ι
Definition
setprod
setprod
:=
λ x0 x1 .
lam
x0
(
λ x2 .
x1
)
Param
Sing
Sing
:
ι
→
ι
Known
tuple_2_1_eq
tuple_2_1_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
1
=
x1
Known
tuple_2_0_eq
tuple_2_0_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
0
=
x0
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
ap1_Sigma
ap1_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
1
∈
x1
(
ap
x2
0
)
Known
setminusE1
setminusE1
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
x2
∈
x0
Known
ap0_Sigma
ap0_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
0
∈
x0
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
setminusE2
setminusE2
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
nIn
x2
x1
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Known
tuple_Sigma_eta
tuple_Sigma_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
(
ap
x2
0
)
(
ap
x2
1
)
)
=
x2
Known
d03c6..
:
∀ x0 .
atleastp
u4
x0
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
(
x2
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x4
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
x1
)
⟶
x1
Theorem
3ebe9..
:
∀ x0 x1 :
ι →
ι →
ι →
ι → ο
.
(
∀ x2 x3 x4 x5 .
x0
x2
x3
x4
x5
⟶
x0
x4
x5
x2
x3
)
⟶
(
∀ x2 .
x2
∈
u6
⟶
∀ x3 .
x3
∈
u6
⟶
not
(
x0
x2
x3
x2
x3
)
)
⟶
(
∀ x2 .
x2
∈
u6
⟶
∀ x3 .
x3
∈
u6
⟶
x1
x2
x3
x2
x3
)
⟶
(
∀ x2 .
x2
∈
u6
⟶
∀ x3 .
x3
∈
u6
⟶
∀ x4 .
x4
∈
u6
⟶
∀ x5 .
x5
∈
u6
⟶
(
x2
=
u5
⟶
x3
=
u5
⟶
False
)
⟶
(
x4
=
u5
⟶
x5
=
u5
⟶
False
)
⟶
x0
x2
x3
x4
x5
⟶
x1
x2
x3
x4
x5
)
⟶
(
∀ x2 .
x2
∈
u6
⟶
∀ x3 .
x3
∈
u6
⟶
∀ x4 .
x4
∈
u6
⟶
∀ x5 .
x5
∈
u6
⟶
(
x2
=
u5
⟶
x3
=
u5
⟶
False
)
⟶
(
x4
=
u5
⟶
x5
=
u5
⟶
False
)
⟶
(
x2
=
x4
⟶
x3
=
x5
⟶
False
)
⟶
x1
x2
x3
x4
x5
⟶
x0
x2
x3
x4
x5
)
⟶
(
∀ x2 .
x2
∈
u6
⟶
∀ x3 .
x3
∈
u6
⟶
∀ x4 .
x4
∈
u6
⟶
∀ x5 .
x5
∈
u6
⟶
∀ x6 .
x6
∈
u6
⟶
∀ x7 .
x7
∈
u6
⟶
∀ x8 .
x8
∈
u6
⟶
∀ x9 .
x9
∈
u6
⟶
x0
x2
x3
x4
x5
⟶
x0
x2
x3
x6
x7
⟶
x0
x2
x3
x8
x9
⟶
x0
x4
x5
x6
x7
⟶
x0
x4
x5
x8
x9
⟶
x0
x6
x7
x8
x9
⟶
False
)
⟶
(
∀ x2 .
x2
∈
u6
⟶
∀ x3 .
x3
∈
u6
⟶
∀ x4 .
x4
∈
u6
⟶
∀ x5 .
x5
∈
u6
⟶
∀ x6 .
x6
∈
u6
⟶
∀ x7 .
x7
∈
u6
⟶
∀ x8 .
x8
∈
u6
⟶
∀ x9 .
x9
∈
u6
⟶
∀ x10 .
x10
∈
u6
⟶
∀ x11 .
x11
∈
u6
⟶
∀ x12 .
x12
∈
u6
⟶
∀ x13 .
x13
∈
u6
⟶
not
(
x1
x2
x3
x4
x5
)
⟶
not
(
x1
x2
x3
x6
x7
)
⟶
not
(
x1
x2
x3
x8
x9
)
⟶
not
(
x1
x2
x3
x10
x11
)
⟶
not
(
x1
x2
x3
x12
x13
)
⟶
not
(
x1
x4
x5
x6
x7
)
⟶
not
(
x1
x4
x5
x8
x9
)
⟶
not
(
x1
x4
x5
x10
x11
)
⟶
not
(
x1
x4
x5
x12
x13
)
⟶
not
(
x1
x6
x7
x8
x9
)
⟶
not
(
x1
x6
x7
x10
x11
)
⟶
not
(
x1
x6
x7
x12
x13
)
⟶
not
(
x1
x8
x9
x10
x11
)
⟶
not
(
x1
x8
x9
x12
x13
)
⟶
not
(
x1
x10
x11
x12
x13
)
⟶
False
)
⟶
not
(
TwoRamseyProp_atleastp
u4
u6
(
setminus
(
setprod
u6
u6
)
(
Sing
(
lam
2
(
λ x2 .
If_i
(
x2
=
0
)
u5
u5
)
)
)
)
)
(proof)
Param
TwoRamseyProp
TwoRamseyProp
:
ι
→
ι
→
ι
→
ο
Definition
u7
:=
ordsucc
u6
Definition
u8
:=
ordsucc
u7
Definition
u9
:=
ordsucc
u8
Definition
u10
:=
ordsucc
u9
Definition
u11
:=
ordsucc
u10
Definition
u12
:=
ordsucc
u11
Definition
u13
:=
ordsucc
u12
Definition
u14
:=
ordsucc
u13
Definition
u15
:=
ordsucc
u14
Definition
u16
:=
ordsucc
u15
Definition
u17
:=
ordsucc
u16
Definition
u18
:=
ordsucc
u17
Definition
u19
:=
ordsucc
u18
Definition
u20
:=
ordsucc
u19
Definition
u21
:=
ordsucc
u20
Definition
u22
:=
ordsucc
u21
Definition
u23
:=
ordsucc
u22
Definition
u24
:=
ordsucc
u23
Definition
u25
:=
ordsucc
u24
Definition
u26
:=
ordsucc
u25
Definition
u27
:=
ordsucc
u26
Definition
u28
:=
ordsucc
u27
Definition
u29
:=
ordsucc
u28
Definition
u30
:=
ordsucc
u29
Definition
u31
:=
ordsucc
u30
Definition
u32
:=
ordsucc
u31
Definition
u33
:=
ordsucc
u32
Definition
u34
:=
ordsucc
u33
Definition
u35
:=
ordsucc
u34
Known
TwoRamseyProp_atleastp_atleastp
:
∀ x0 x1 x2 x3 x4 .
TwoRamseyProp
x0
x2
x4
⟶
atleastp
x1
x0
⟶
atleastp
x3
x2
⟶
TwoRamseyProp_atleastp
x1
x3
x4
Known
atleastp_ref
:
∀ x0 .
atleastp
x0
x0
Known
46dcf..
:
∀ x0 x1 x2 x3 .
atleastp
x2
x3
⟶
TwoRamseyProp
x0
x1
x2
⟶
TwoRamseyProp
x0
x1
x3
Param
equip
equip
:
ι
→
ι
→
ο
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
903ea..
:
equip
(
setminus
(
setprod
u6
u6
)
(
Sing
(
lam
2
(
λ x0 .
If_i
(
x0
=
0
)
u5
u5
)
)
)
)
u35
Theorem
df3e1..
:
∀ x0 x1 :
ι →
ι →
ι →
ι → ο
.
(
∀ x2 x3 x4 x5 .
x0
x2
x3
x4
x5
⟶
x0
x4
x5
x2
x3
)
⟶
(
∀ x2 .
x2
∈
u6
⟶
∀ x3 .
x3
∈
u6
⟶
not
(
x0
x2
x3
x2
x3
)
)
⟶
(
∀ x2 .
x2
∈
u6
⟶
∀ x3 .
x3
∈
u6
⟶
x1
x2
x3
x2
x3
)
⟶
(
∀ x2 .
x2
∈
u6
⟶
∀ x3 .
x3
∈
u6
⟶
∀ x4 .
x4
∈
u6
⟶
∀ x5 .
x5
∈
u6
⟶
(
x2
=
u5
⟶
x3
=
u5
⟶
False
)
⟶
(
x4
=
u5
⟶
x5
=
u5
⟶
False
)
⟶
x0
x2
x3
x4
x5
⟶
x1
x2
x3
x4
x5
)
⟶
(
∀ x2 .
x2
∈
u6
⟶
∀ x3 .
x3
∈
u6
⟶
∀ x4 .
x4
∈
u6
⟶
∀ x5 .
x5
∈
u6
⟶
(
x2
=
u5
⟶
x3
=
u5
⟶
False
)
⟶
(
x4
=
u5
⟶
x5
=
u5
⟶
False
)
⟶
(
x2
=
x4
⟶
x3
=
x5
⟶
False
)
⟶
x1
x2
x3
x4
x5
⟶
x0
x2
x3
x4
x5
)
⟶
(
∀ x2 .
x2
∈
u6
⟶
∀ x3 .
x3
∈
u6
⟶
∀ x4 .
x4
∈
u6
⟶
∀ x5 .
x5
∈
u6
⟶
∀ x6 .
x6
∈
u6
⟶
∀ x7 .
x7
∈
u6
⟶
∀ x8 .
x8
∈
u6
⟶
∀ x9 .
x9
∈
u6
⟶
x0
x2
x3
x4
x5
⟶
x0
x2
x3
x6
x7
⟶
x0
x2
x3
x8
x9
⟶
x0
x4
x5
x6
x7
⟶
x0
x4
x5
x8
x9
⟶
x0
x6
x7
x8
x9
⟶
False
)
⟶
(
∀ x2 .
x2
∈
u6
⟶
∀ x3 .
x3
∈
u6
⟶
∀ x4 .
x4
∈
u6
⟶
∀ x5 .
x5
∈
u6
⟶
∀ x6 .
x6
∈
u6
⟶
∀ x7 .
x7
∈
u6
⟶
∀ x8 .
x8
∈
u6
⟶
∀ x9 .
x9
∈
u6
⟶
∀ x10 .
x10
∈
u6
⟶
∀ x11 .
x11
∈
u6
⟶
∀ x12 .
x12
∈
u6
⟶
∀ x13 .
x13
∈
u6
⟶
not
(
x1
x2
x3
x4
x5
)
⟶
not
(
x1
x2
x3
x6
x7
)
⟶
not
(
x1
x2
x3
x8
x9
)
⟶
not
(
x1
x2
x3
x10
x11
)
⟶
not
(
x1
x2
x3
x12
x13
)
⟶
not
(
x1
x4
x5
x6
x7
)
⟶
not
(
x1
x4
x5
x8
x9
)
⟶
not
(
x1
x4
x5
x10
x11
)
⟶
not
(
x1
x4
x5
x12
x13
)
⟶
not
(
x1
x6
x7
x8
x9
)
⟶
not
(
x1
x6
x7
x10
x11
)
⟶
not
(
x1
x6
x7
x12
x13
)
⟶
not
(
x1
x8
x9
x10
x11
)
⟶
not
(
x1
x8
x9
x12
x13
)
⟶
not
(
x1
x10
x11
x12
x13
)
⟶
False
)
⟶
not
(
TwoRamseyProp
4
6
35
)
(proof)