Search for blocks/addresses/...

Proofgold Asset

asset id
f33a72b0b993bffcbdd9cd2f0ad9e3767f023bc5ba267f52d599894d7817f141
asset hash
6d290488aa8351f275d6138ea57911938c00864d16a550b28f9d041ceef4ee7b
bday / block
12486
tx
b9249..
preasset
doc published by PrGxv..
Param SNoSNo : ιο
Param SNoLeSNoLe : ιιο
Param SNoLtSNoLt : ιιο
Param mul_SNomul_SNo : ιιι
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known SNoLtLe_orSNoLtLe_or : ∀ x0 x1 . SNo x0SNo x1or (SNoLt x0 x1) (SNoLe x1 x0)
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known SNoLt_irrefSNoLt_irref : ∀ x0 . not (SNoLt x0 x0)
Known SNoLeLt_traSNoLeLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLt x1 x2SNoLt x0 x2
Known SNo_mul_SNoSNo_mul_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (mul_SNo x0 x1)
Known nonneg_mul_SNo_Lenonneg_mul_SNo_Le : ∀ x0 x1 x2 . SNo x0SNoLe 0 x0SNo x1SNo x2SNoLe x1 x2SNoLe (mul_SNo x0 x1) (mul_SNo x0 x2)
Theorem 3987d.. : ∀ x0 x1 x2 . SNo x0SNoLe 0 x0SNo x1SNo x2SNoLt (mul_SNo x0 x1) (mul_SNo x0 x2)SNoLt x1 x2 (proof)
Known mul_SNo_commul_SNo_com : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 x1 = mul_SNo x1 x0
Theorem e2621.. : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe 0 x2SNoLt (mul_SNo x0 x2) (mul_SNo x1 x2)SNoLt x0 x1 (proof)
Param realreal : ι
Param ordsuccordsucc : ιι
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Param SNoLevSNoLev : ιι
Param omegaomega : ι
Param SNoS_SNoS_ : ιι
Param minus_SNominus_SNo : ιι
Param abs_SNoabs_SNo : ιι
Param add_SNoadd_SNo : ιιι
Param eps_eps_ : ιι
Known real_Ereal_E : ∀ x0 . x0real∀ x1 : ο . (SNo x0SNoLev x0ordsucc omegax0SNoS_ (ordsucc omega)SNoLt (minus_SNo omega) x0SNoLt x0 omega(∀ x2 . x2SNoS_ omega(∀ x3 . x3omegaSNoLt (abs_SNo (add_SNo x2 (minus_SNo x0))) (eps_ x3))x2 = x0)(∀ x2 . x2omega∀ x3 : ο . (∀ x4 . and (x4SNoS_ omega) (and (SNoLt x4 x0) (SNoLt x0 (add_SNo x4 (eps_ x2))))x3)x3)x1)x1
Param SepSep : ι(ιο) → ι
Definition SNoCutPSNoCutP := λ x0 x1 . and (and (∀ x2 . x2x0SNo x2) (∀ x2 . x2x1SNo x2)) (∀ x2 . x2x0∀ x3 . x3x1SNoLt x2 x3)
Param SNoCutSNoCut : ιιι
Param binunionbinunion : ιιι
Param famunionfamunion : ι(ιι) → ι
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param SNoEq_SNoEq_ : ιιιο
Known SNoCutP_SNoCut_impredSNoCutP_SNoCut_impred : ∀ x0 x1 . SNoCutP x0 x1∀ x2 : ο . (SNo (SNoCut x0 x1)SNoLev (SNoCut x0 x1)ordsucc (binunion (famunion x0 (λ x3 . ordsucc (SNoLev x3))) (famunion x1 (λ x3 . ordsucc (SNoLev x3))))(∀ x3 . x3x0SNoLt x3 (SNoCut x0 x1))(∀ x3 . x3x1SNoLt (SNoCut x0 x1) x3)(∀ x3 . SNo x3(∀ x4 . x4x0SNoLt x4 x3)(∀ x4 . x4x1SNoLt x3 x4)and (SNoLev (SNoCut x0 x1)SNoLev x3) (SNoEq_ (SNoLev (SNoCut x0 x1)) (SNoCut x0 x1) x3))x2)x2
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known SNoLt_traSNoLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLt x1 x2SNoLt x0 x2
Known SNo_1SNo_1 : SNo 1
Known SNoLtLeSNoLtLe : ∀ x0 x1 . SNoLt x0 x1SNoLe x0 x1
Known real_mul_SNoreal_mul_SNo : ∀ x0 . x0real∀ x1 . x1realmul_SNo x0 x1real
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known omega_SNoS_omegaomega_SNoS_omega : omegaSNoS_ omega
Param nat_pnat_p : ιο
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Known nat_1nat_1 : nat_p 1
Known omega_ordsuccomega_ordsucc : ∀ x0 . x0omegaordsucc x0omega
Param ordinalordinal : ιο
Param SNo_SNo_ : ιιο
Known SNoS_E2SNoS_E2 : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0∀ x2 : ο . (SNoLev x1x0ordinal (SNoLev x1)SNo x1SNo_ (SNoLev x1) x1x2)x2
Known omega_ordinalomega_ordinal : ordinal omega
Known SNo_abs_SNoSNo_abs_SNo : ∀ x0 . SNo x0SNo (abs_SNo x0)
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Known SNo_eps_SNo_eps_ : ∀ x0 . x0omegaSNo (eps_ x0)
Known SNo_triangle2SNo_triangle2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe (abs_SNo (add_SNo x0 (minus_SNo x2))) (add_SNo (abs_SNo (add_SNo x0 (minus_SNo x1))) (abs_SNo (add_SNo x1 (minus_SNo x2))))
Known eps_ordsucc_half_addeps_ordsucc_half_add : ∀ x0 . nat_p x0add_SNo (eps_ (ordsucc x0)) (eps_ (ordsucc x0)) = eps_ x0
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Known add_SNo_Lt3add_SNo_Lt3 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLt x0 x2SNoLt x1 x3SNoLt (add_SNo x0 x1) (add_SNo x2 x3)
Known abs_SNo_intvl_bdabs_SNo_intvl_bd : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLt x1 (add_SNo x0 x2)SNoLt (abs_SNo (add_SNo x1 (minus_SNo x0))) x2
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known add_SNo_SNoS_omegaadd_SNo_SNoS_omega : ∀ x0 . x0SNoS_ omega∀ x1 . x1SNoS_ omegaadd_SNo x0 x1SNoS_ omega
Known SNo_eps_SNoS_omegaSNo_eps_SNoS_omega : ∀ x0 . x0omegaeps_ x0SNoS_ omega
Known abs_SNo_dist_swapabs_SNo_dist_swap : ∀ x0 x1 . SNo x0SNo x1abs_SNo (add_SNo x0 (minus_SNo x1)) = abs_SNo (add_SNo x1 (minus_SNo x0))
Known real_SNoreal_SNo : ∀ x0 . x0realSNo x0
Known pos_mul_SNo_Ltpos_mul_SNo_Lt : ∀ x0 x1 x2 . SNo x0SNoLt 0 x0SNo x1SNo x2SNoLt x1 x2SNoLt (mul_SNo x0 x1) (mul_SNo x0 x2)
Known mul_SNo_distrLmul_SNo_distrL : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (add_SNo x1 x2) = add_SNo (mul_SNo x0 x1) (mul_SNo x0 x2)
Known add_SNo_Lt2add_SNo_Lt2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x1 x2SNoLt (add_SNo x0 x1) (add_SNo x0 x2)
Known mul_SNo_Lt1_pos_Ltmul_SNo_Lt1_pos_Lt : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 1SNoLt 0 x1SNoLt (mul_SNo x0 x1) x1
Known SNo_eps_posSNo_eps_pos : ∀ x0 . x0omegaSNoLt 0 (eps_ x0)
Known real_Ireal_I : ∀ x0 . x0SNoS_ (ordsucc omega)(x0 = omega∀ x1 : ο . x1)(x0 = minus_SNo omega∀ x1 : ο . x1)(∀ x1 . x1SNoS_ omega(∀ x2 . x2omegaSNoLt (abs_SNo (add_SNo x1 (minus_SNo x0))) (eps_ x2))x1 = x0)x0real
Known SNoS_ISNoS_I : ∀ x0 . ordinal x0∀ x1 x2 . x2x0SNo_ x2 x1x1SNoS_ x0
Known ordsucc_omega_ordinalordsucc_omega_ordinal : ordinal (ordsucc omega)
Known ordinal_In_Or_Subqordinal_In_Or_Subq : ∀ x0 x1 . ordinal x0ordinal x1or (x0x1) (x1x0)
Known SNoLev_ordinalSNoLev_ordinal : ∀ x0 . SNo x0ordinal (SNoLev x0)
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Param TransSetTransSet : ιο
Known TransSet_In_ordsucc_SubqTransSet_In_ordsucc_Subq : ∀ x0 x1 . TransSet x1x0ordsucc x1x0x1
Known ordinal_TransSetordinal_TransSet : ∀ x0 . ordinal x0TransSet x0
Known ordinal_binunionordinal_binunion : ∀ x0 x1 . ordinal x0ordinal x1ordinal (binunion x0 x1)
Known ordinal_famunionordinal_famunion : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2x0ordinal (x1 x2))ordinal (famunion x0 x1)
Known ordinal_ordsuccordinal_ordsucc : ∀ x0 . ordinal x0ordinal (ordsucc x0)
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Known famunionE_impredfamunionE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2famunion x0 x1∀ x3 : ο . (∀ x4 . x4x0x2x1 x4x3)x3
Known In_no2cycleIn_no2cycle : ∀ x0 x1 . x0x1x1x0False
Known SNoLev_SNoLev_ : ∀ x0 . SNo x0SNo_ (SNoLev x0) x0
Known nat_0nat_0 : nat_p 0
Known add_SNo_0Ladd_SNo_0L : ∀ x0 . SNo x0add_SNo 0 x0 = x0
Known abs_SNo_minusabs_SNo_minus : ∀ x0 . SNo x0abs_SNo (minus_SNo x0) = abs_SNo x0
Known pos_abs_SNopos_abs_SNo : ∀ x0 . SNoLt 0 x0abs_SNo x0 = x0
Param exp_SNo_natexp_SNo_nat : ιιι
Known SNo_omegaSNo_omega : SNo omega
Known mul_SNo_oneRmul_SNo_oneR : ∀ x0 . SNo x0mul_SNo x0 1 = x0
Known SNoLtLe_traSNoLtLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLe x1 x2SNoLt x0 x2
Known add_SNo_0Radd_SNo_0R : ∀ x0 . SNo x0add_SNo x0 0 = x0
Known SNo_0SNo_0 : SNo 0
Known add_SNo_Le1add_SNo_Le1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x2SNoLe (add_SNo x0 x1) (add_SNo x2 x1)
Known mul_SNo_eps_power_2mul_SNo_eps_power_2 : ∀ x0 . nat_p x0mul_SNo (eps_ x0) (exp_SNo_nat 2 x0) = 1
Known nonneg_mul_SNo_Le'nonneg_mul_SNo_Le : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe 0 x2SNoLe x0 x1SNoLe (mul_SNo x0 x2) (mul_SNo x1 x2)
Known exp_SNo_nat_posexp_SNo_nat_pos : ∀ x0 . SNo x0SNoLt 0 x0∀ x1 . nat_p x1SNoLt 0 (exp_SNo_nat x0 x1)
Known SNo_2SNo_2 : SNo 2
Known SNoLt_0_2SNoLt_0_2 : SNoLt 0 2
Known ordinal_In_SNoLtordinal_In_SNoLt : ∀ x0 . ordinal x0∀ x1 . x1x0SNoLt x1 x0
Known add_SNo_1_ordsuccadd_SNo_1_ordsucc : ∀ x0 . x0omegaadd_SNo x0 1 = ordsucc x0
Known nat_p_SNonat_p_SNo : ∀ x0 . nat_p x0SNo x0
Known nat_exp_SNo_natnat_exp_SNo_nat : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (exp_SNo_nat x0 x1)
Known nat_2nat_2 : nat_p 2
Known mul_SNo_zeroRmul_SNo_zeroR : ∀ x0 . SNo x0mul_SNo x0 0 = 0
Known SNoLt_0_1SNoLt_0_1 : SNoLt 0 1
Known minus_SNo_Lt_contra1minus_SNo_Lt_contra1 : ∀ x0 x1 . SNo x0SNo x1SNoLt (minus_SNo x0) x1SNoLt (minus_SNo x1) x0
Known minus_SNo_0minus_SNo_0 : minus_SNo 0 = 0
Known SNoLt_trichotomy_or_impredSNoLt_trichotomy_or_impred : ∀ x0 x1 . SNo x0SNo x1∀ x2 : ο . (SNoLt x0 x1x2)(x0 = x1x2)(SNoLt x1 x0x2)x2
Known SNoLt_minus_posSNoLt_minus_pos : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1SNoLt 0 (add_SNo x1 (minus_SNo x0))
Known add_SNo_comadd_SNo_com : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = add_SNo x1 x0
Known add_SNo_minus_Le2add_SNo_minus_Le2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x2 (add_SNo x0 (minus_SNo x1))SNoLe (add_SNo x2 x1) x0
Known add_SNo_minus_Lt1add_SNo_minus_Lt1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt (add_SNo x0 (minus_SNo x1)) x2SNoLt x0 (add_SNo x2 x1)
Known add_SNo_minus_Le2badd_SNo_minus_Le2b : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe (add_SNo x2 x1) x0SNoLe x2 (add_SNo x0 (minus_SNo x1))
Known minus_SNo_SNoS_omegaminus_SNo_SNoS_omega : ∀ x0 . x0SNoS_ omegaminus_SNo x0SNoS_ omega
Known mul_SNo_minus_distrRmul_minus_SNo_distrR : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 (minus_SNo x1) = minus_SNo (mul_SNo x0 x1)
Known minus_SNo_Lt_contraminus_SNo_Lt_contra : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1SNoLt (minus_SNo x1) (minus_SNo x0)
Known add_SNo_minus_Lt1badd_SNo_minus_Lt1b : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 (add_SNo x2 x1)SNoLt (add_SNo x0 (minus_SNo x1)) x2
Known SNoS_omega_realSNoS_omega_real : SNoS_ omegareal
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Theorem pos_small_real_recip_expos_small_real_recip_ex : ∀ x0 . x0realSNoLt 0 x0SNoLt x0 1∀ x1 : ο . (∀ x2 . and (x2real) (mul_SNo x0 x2 = 1)x1)x1 (proof)
Known SNoS_ordsucc_omega_bdd_eps_posSNoS_ordsucc_omega_bdd_eps_pos : ∀ x0 . x0SNoS_ (ordsucc omega)SNoLt 0 x0SNoLt x0 omega∀ x1 : ο . (∀ x2 . and (x2omega) (SNoLt (mul_SNo (eps_ x2) x0) 1)x1)x1
Known mul_SNo_pos_posmul_SNo_pos_pos : ∀ x0 x1 . SNo x0SNo x1SNoLt 0 x0SNoLt 0 x1SNoLt 0 (mul_SNo x0 x1)
Known mul_SNo_assocmul_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (mul_SNo x1 x2) = mul_SNo (mul_SNo x0 x1) x2
Theorem pos_real_recip_expos_real_recip_ex : ∀ x0 . x0realSNoLt 0 x0∀ x1 : ο . (∀ x2 . and (x2real) (mul_SNo x0 x2 = 1)x1)x1 (proof)
Known real_minus_SNoreal_minus_SNo : ∀ x0 . x0realminus_SNo x0real
Known minus_SNo_Lt_contra2minus_SNo_Lt_contra2 : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 (minus_SNo x1)SNoLt x1 (minus_SNo x0)
Known mul_SNo_minus_distrLmul_SNo_minus_distrL : ∀ x0 x1 . SNo x0SNo x1mul_SNo (minus_SNo x0) x1 = minus_SNo (mul_SNo x0 x1)
Theorem nonzero_real_recip_exnonzero_real_recip_ex : ∀ x0 . x0real(x0 = 0∀ x1 : ο . x1)∀ x1 : ο . (∀ x2 . and (x2real) (mul_SNo x0 x2 = 1)x1)x1 (proof)
Param explicit_Fieldexplicit_Field : ιιι(ιιι) → (ιιι) → ο
Known explicit_Field_Iexplicit_Field_I : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . (∀ x5 . x5x0∀ x6 . x6x0x3 x5 x6x0)(∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x3 x5 (x3 x6 x7) = x3 (x3 x5 x6) x7)(∀ x5 . x5x0∀ x6 . x6x0x3 x5 x6 = x3 x6 x5)x1x0(∀ x5 . x5x0x3 x1 x5 = x5)(∀ x5 . x5x0∀ x6 : ο . (∀ x7 . and (x7x0) (x3 x5 x7 = x1)x6)x6)(∀ x5 . x5x0∀ x6 . x6x0x4 x5 x6x0)(∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x4 x5 (x4 x6 x7) = x4 (x4 x5 x6) x7)(∀ x5 . x5x0∀ x6 . x6x0x4 x5 x6 = x4 x6 x5)x2x0(x2 = x1∀ x5 : ο . x5)(∀ x5 . x5x0x4 x2 x5 = x5)(∀ x5 . x5x0(x5 = x1∀ x6 : ο . x6)∀ x6 : ο . (∀ x7 . and (x7x0) (x4 x5 x7 = x2)x6)x6)(∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x4 x5 (x3 x6 x7) = x3 (x4 x5 x6) (x4 x5 x7))explicit_Field x0 x1 x2 x3 x4
Known real_add_SNoreal_add_SNo : ∀ x0 . x0real∀ x1 . x1realadd_SNo x0 x1real
Known add_SNo_assocadd_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo (add_SNo x0 x1) x2
Known real_0real_0 : 0real
Known add_SNo_minus_SNo_rinvadd_SNo_minus_SNo_rinv : ∀ x0 . SNo x0add_SNo x0 (minus_SNo x0) = 0
Known real_1real_1 : 1real
Known neq_1_0neq_1_0 : 1 = 0∀ x0 : ο . x0
Known mul_SNo_oneLmul_SNo_oneL : ∀ x0 . SNo x0mul_SNo 1 x0 = x0
Theorem explicit_Field_real : explicit_Field real 0 1 add_SNo mul_SNo (proof)
Param explicit_OrderedFieldexplicit_OrderedField : ιιι(ιιι) → (ιιι) → (ιιο) → ο
Param iffiff : οοο
Known explicit_OrderedField_Iexplicit_OrderedField_I : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_Field x0 x1 x2 x3 x4(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x5 x6 x7x5 x7 x8x5 x6 x8)(∀ x6 . x6x0∀ x7 . x7x0iff (and (x5 x6 x7) (x5 x7 x6)) (x6 = x7))(∀ x6 . x6x0∀ x7 . x7x0or (x5 x6 x7) (x5 x7 x6))(∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0x5 x6 x7x5 (x3 x6 x8) (x3 x7 x8))(∀ x6 . x6x0∀ x7 . x7x0x5 x1 x6x5 x1 x7x5 x1 (x4 x6 x7))explicit_OrderedField x0 x1 x2 x3 x4 x5
Known SNoLe_traSNoLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLe x1 x2SNoLe x0 x2
Known iffIiffI : ∀ x0 x1 : ο . (x0x1)(x1x0)iff x0 x1
Known SNoLe_antisymSNoLe_antisym : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 x1SNoLe x1 x0x0 = x1
Known SNoLe_refSNoLe_ref : ∀ x0 . SNoLe x0 x0
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Known SNoLeESNoLeE : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 x1or (SNoLt x0 x1) (x0 = x1)
Known mul_SNo_zeroLmul_SNo_zeroL : ∀ x0 . SNo x0mul_SNo 0 x0 = 0
Theorem explicit_OrderedField_real : explicit_OrderedField real 0 1 add_SNo mul_SNo SNoLe (proof)
Param explicit_Natsexplicit_Nats : ιι(ιι) → ο
Known explicit_Nats_Eexplicit_Nats_E : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 : ο . (explicit_Nats x0 x1 x2x1x0(∀ x4 . x4x0x2 x4x0)(∀ x4 . x4x0x2 x4 = x1∀ x5 : ο . x5)(∀ x4 . x4x0∀ x5 . x5x0x2 x4 = x2 x5x4 = x5)(∀ x4 : ι → ο . x4 x1(∀ x5 . x4 x5x4 (x2 x5))∀ x5 . x5x0x4 x5)x3)explicit_Nats x0 x1 x2x3
Theorem 62095.. : ∀ x0 x1 . ∀ x2 : ι → ι . explicit_Nats x0 x1 x2∀ x3 : ο . (x1x0(∀ x4 . x4x0x2 x4x0)(∀ x4 . x4x0x2 x4 = x1∀ x5 : ο . x5)(∀ x4 . x4x0∀ x5 . x5x0x2 x4 = x2 x5x4 = x5)(∀ x4 : ι → ο . x4 x1(∀ x5 . x4 x5x4 (x2 x5))∀ x5 . x5x0x4 x5)x3)x3 (proof)
Param natOfOrderedField_pnatOfOrderedField_p : ιιι(ιιι) → (ιιι) → (ιιο) → ιο
Known explicit_Nats_natOfOrderedFieldexplicit_Nats_natOfOrderedField : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_OrderedField x0 x1 x2 x3 x4 x5explicit_Nats (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) x1 (λ x6 . x3 x6 x2)
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Theorem 2c707.. : Sep real (natOfOrderedField_p real 0 1 add_SNo mul_SNo SNoLe) = omega (proof)
Param explicit_Realsexplicit_Reals : ιιι(ιιι) → (ιιι) → (ιιο) → ο
Definition ltlt := λ x0 x1 x2 . λ x3 x4 : ι → ι → ι . λ x5 : ι → ι → ο . λ x6 x7 . and (x5 x6 x7) (x6 = x7∀ x8 : ο . x8)
Param setexpsetexp : ιιι
Param apap : ιιι
Known explicit_Reals_Iexplicit_Reals_I : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . explicit_OrderedField x0 x1 x2 x3 x4 x5(∀ x6 . x6x0∀ x7 . x7x0lt x0 x1 x2 x3 x4 x5 x1 x6x5 x1 x7∀ x8 : ο . (∀ x9 . and (x9Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) (x5 x7 (x4 x9 x6))x8)x8)(∀ x6 . x6setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5))∀ x7 . x7setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5))(∀ x8 . x8Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)and (and (x5 (ap x6 x8) (ap x7 x8)) (x5 (ap x6 x8) (ap x6 (x3 x8 x2)))) (x5 (ap x7 (x3 x8 x2)) (ap x7 x8)))∀ x8 : ο . (∀ x9 . and (x9x0) (∀ x10 . x10Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)and (x5 (ap x6 x10) x9) (x5 x9 (ap x7 x10)))x8)x8)explicit_Reals x0 x1 x2 x3 x4 x5
Known real_Archimedeanreal_Archimedean : ∀ x0 . x0real∀ x1 . x1realSNoLt 0 x0SNoLe 0 x1∀ x2 : ο . (∀ x3 . and (x3omega) (SNoLe x1 (mul_SNo x3 x0))x2)x2
Known real_complete2real_complete2 : ∀ x0 . x0setexp real omega∀ x1 . x1setexp real omega(∀ x2 . x2omegaand (and (SNoLe (ap x0 x2) (ap x1 x2)) (SNoLe (ap x0 x2) (ap x0 (add_SNo x2 1)))) (SNoLe (ap x1 (add_SNo x2 1)) (ap x1 x2)))∀ x2 : ο . (∀ x3 . and (x3real) (∀ x4 . x4omegaand (SNoLe (ap x0 x4) x3) (SNoLe x3 (ap x1 x4)))x2)x2
Theorem explicit_Reals_real : explicit_Reals real 0 1 add_SNo mul_SNo SNoLe (proof)
Param pack_b_b_r_e_epack_b_b_r_e_e : ι(ιιι) → (ιιι) → (ιιο) → ιιι
Definition real_struct := pack_b_b_r_e_e real add_SNo mul_SNo SNoLe 0 1
Param struct_b_b_r_e_estruct_b_b_r_e_e : ιο
Param unpack_b_b_r_e_e_ounpack_b_b_r_e_e_o : ι(ι(ιιι) → (ιιι) → (ιιο) → ιιο) → ο
Definition RealsStructRealsStruct := λ x0 . and (struct_b_b_r_e_e x0) (unpack_b_b_r_e_e_o x0 (λ x1 . λ x2 x3 : ι → ι → ι . λ x4 : ι → ι → ο . λ x5 x6 . explicit_Reals x1 x5 x6 x2 x3 x4))
Known pack_struct_b_b_r_e_e_Ipack_struct_b_b_r_e_e_I : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x0)∀ x2 : ι → ι → ι . (∀ x3 . x3x0∀ x4 . x4x0x2 x3 x4x0)∀ x3 : ι → ι → ο . ∀ x4 . x4x0∀ x5 . x5x0struct_b_b_r_e_e (pack_b_b_r_e_e x0 x1 x2 x3 x4 x5)
Known RealsStruct_unpack_eqRealsStruct_unpack_eq : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 x5 . unpack_b_b_r_e_e_o (pack_b_b_r_e_e x0 x1 x2 x3 x4 x5) (λ x7 . λ x8 x9 : ι → ι → ι . λ x10 : ι → ι → ο . λ x11 x12 . explicit_Reals x7 x11 x12 x8 x9 x10) = explicit_Reals x0 x4 x5 x1 x2 x3
Theorem e87bd.. : RealsStruct real_struct (proof)