Search for blocks/addresses/...

Proofgold Asset

asset id
f442c510e27e63618ce832b5edbe42e0542e46798fcc8cd184cc2de2b1846d30
asset hash
d501e3bedbbb32658444922aab22fa35f2ea52674ca42639dfcf962f148c75f8
bday / block
27854
tx
616f4..
preasset
doc published by PrQUS..
Param SNoSNo : ιο
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Param PNoLtPNoLt : ι(ιο) → ι(ιο) → ο
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param PNoEq_PNoEq_ : ι(ιο) → (ιο) → ο
Definition PNoLePNoLe := λ x0 . λ x1 : ι → ο . λ x2 . λ x3 : ι → ο . or (PNoLt x0 x1 x2 x3) (and (x0 = x2) (PNoEq_ x0 x1 x3))
Param SNoLevSNoLev : ιι
Definition SNoLeSNoLe := λ x0 x1 . PNoLe (SNoLev x0) (λ x2 . x2x0) (SNoLev x1) (λ x2 . x2x1)
Param SNoLtSNoLt : ιιο
Definition SNoCutPSNoCutP := λ x0 x1 . and (and (∀ x2 . x2x0SNo x2) (∀ x2 . x2x1SNo x2)) (∀ x2 . x2x0∀ x3 . x3x1SNoLt x2 x3)
Param famunionfamunion : ι(ιι) → ι
Param omegaomega : ι
Param apap : ιιι
Param SNo_sqrtauxSNo_sqrtaux : ι(ιι) → ιι
Param sqrt_SNo_nonnegsqrt_SNo_nonneg : ιι
Param ordsuccordsucc : ιι
Param mul_SNomul_SNo : ιιι
Param SNoCutSNoCut : ιιι
Known SNoCut_0_0SNoCut_0_0 : SNoCut 0 0 = 0
Known SNoCut_LeSNoCut_Le : ∀ x0 x1 x2 x3 . SNoCutP x0 x1SNoCutP x2 x3(∀ x4 . x4x0SNoLt x4 (SNoCut x2 x3))(∀ x4 . x4x3SNoLt (SNoCut x0 x1) x4)SNoLe (SNoCut x0 x1) (SNoCut x2 x3)
Known SNoCutP_0_0SNoCutP_0_0 : SNoCutP 0 0
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Known SNoLeESNoLeE : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 x1or (SNoLt x0 x1) (x0 = x1)
Known SNo_0SNo_0 : SNo 0
Known SNoLt_irrefSNoLt_irref : ∀ x0 . not (SNoLt x0 x0)
Known SNoLtLe_traSNoLtLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLe x1 x2SNoLt x0 x2
Known mul_SNo_zeroRmul_SNo_zeroR : ∀ x0 . SNo x0mul_SNo x0 0 = 0
Theorem sqrt_SNo_nonneg_prop1csqrt_SNo_nonneg_prop1c : ∀ x0 . SNo x0SNoLe 0 x0SNoCutP (famunion omega (λ x1 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x1) 0)) (famunion omega (λ x1 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x1) 1))(∀ x1 . x1famunion omega (λ x2 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x2) 1)∀ x2 : ο . (SNo x1SNoLe 0 x1SNoLt x0 (mul_SNo x1 x1)x2)x2)SNoLe 0 (SNoCut (famunion omega (λ x1 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x1) 0)) (famunion omega (λ x1 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x1) 1))) (proof)
Param SNoS_SNoS_ : ιι
Param binunionbinunion : ιιι
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param SNoEq_SNoEq_ : ιιιο
Known SNoCutP_SNoCut_impredSNoCutP_SNoCut_impred : ∀ x0 x1 . SNoCutP x0 x1∀ x2 : ο . (SNo (SNoCut x0 x1)SNoLev (SNoCut x0 x1)ordsucc (binunion (famunion x0 (λ x3 . ordsucc (SNoLev x3))) (famunion x1 (λ x3 . ordsucc (SNoLev x3))))(∀ x3 . x3x0SNoLt x3 (SNoCut x0 x1))(∀ x3 . x3x1SNoLt (SNoCut x0 x1) x3)(∀ x3 . SNo x3(∀ x4 . x4x0SNoLt x4 x3)(∀ x4 . x4x1SNoLt x3 x4)and (SNoLev (SNoCut x0 x1)SNoLev x3) (SNoEq_ (SNoLev (SNoCut x0 x1)) (SNoCut x0 x1) x3))x2)x2
Param binintersectbinintersect : ιιι
Known SNoLtESNoLtE : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1∀ x2 : ο . (∀ x3 . SNo x3SNoLev x3binintersect (SNoLev x0) (SNoLev x1)SNoEq_ (SNoLev x3) x3 x0SNoEq_ (SNoLev x3) x3 x1SNoLt x0 x3SNoLt x3 x1nIn (SNoLev x3) x0SNoLev x3x1x2)(SNoLev x0SNoLev x1SNoEq_ (SNoLev x0) x0 x1SNoLev x0x1x2)(SNoLev x1SNoLev x0SNoEq_ (SNoLev x1) x0 x1nIn (SNoLev x1) x0x2)x2
Known SNoS_I2SNoS_I2 : ∀ x0 x1 . SNo x0SNo x1SNoLev x0SNoLev x1x0SNoS_ (SNoLev x1)
Known binintersectE2binintersectE2 : ∀ x0 x1 x2 . x2binintersect x0 x1x2x1
Known nonneg_mul_SNo_Le2nonneg_mul_SNo_Le2 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLe 0 x0SNoLe 0 x1SNoLe x0 x2SNoLe x1 x3SNoLe (mul_SNo x0 x1) (mul_SNo x2 x3)
Known SNoLtLeSNoLtLe : ∀ x0 x1 . SNoLt x0 x1SNoLe x0 x1
Known famunionIfamunionI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2x0x3x1 x2x3famunion x0 x1
Param nat_pnat_p : ιο
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Known nat_0nat_0 : nat_p 0
Param lamSigma : ι(ιι) → ι
Param If_iIf_i : οιιι
Param SepSep : ι(ιο) → ι
Param SNoLSNoL : ιι
Definition SNoL_nonnegSNoL_nonneg := λ x0 . Sep (SNoL x0) (SNoLe 0)
Param SNoRSNoR : ιι
Known SNo_sqrtaux_0SNo_sqrtaux_0 : ∀ x0 . ∀ x1 : ι → ι . SNo_sqrtaux x0 x1 0 = lam 2 (λ x3 . If_i (x3 = 0) (prim5 (SNoL_nonneg x0) x1) (prim5 (SNoR x0) x1))
Known tuple_2_0_eqtuple_2_0_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 0 = x0
Known ReplIReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0x1 x2prim5 x0 x1
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known SNoL_ISNoL_I : ∀ x0 . SNo x0∀ x1 . SNo x1SNoLev x1SNoLev x0SNoLt x1 x0x1SNoL x0
Known SNoLeLt_traSNoLeLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLt x1 x2SNoLt x0 x2
Known SNo_nonneg_sqr_uniqSNo_nonneg_sqr_uniq : ∀ x0 x1 . SNo x0SNo x1SNoLe 0 x0SNoLe 0 x1mul_SNo x0 x0 = mul_SNo x1 x1x0 = x1
Param add_SNoadd_SNo : ιιι
Known mul_SNo_SNoCut_SNoR_interpolate_impredmul_SNo_SNoCut_SNoR_interpolate_impred : ∀ x0 x1 x2 x3 . SNoCutP x0 x1SNoCutP x2 x3∀ x4 x5 . x4 = SNoCut x0 x1x5 = SNoCut x2 x3∀ x6 . x6SNoR (mul_SNo x4 x5)∀ x7 : ο . (∀ x8 . x8x0∀ x9 . x9x3SNoLe (add_SNo (mul_SNo x8 x5) (mul_SNo x4 x9)) (add_SNo x6 (mul_SNo x8 x9))x7)(∀ x8 . x8x1∀ x9 . x9x2SNoLe (add_SNo (mul_SNo x8 x5) (mul_SNo x4 x9)) (add_SNo x6 (mul_SNo x8 x9))x7)x7
Known SNoR_ISNoR_I : ∀ x0 . SNo x0∀ x1 . SNo x1SNoLev x1SNoLev x0SNoLt x0 x1x1SNoR x0
Known mul_SNo_commul_SNo_com : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 x1 = mul_SNo x1 x0
Known add_SNo_comadd_SNo_com : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = add_SNo x1 x0
Known SNo_mul_SNoSNo_mul_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (mul_SNo x0 x1)
Known famunionE_impredfamunionE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2famunion x0 x1∀ x3 : ο . (∀ x4 . x4x0x2x1 x4x3)x3
Known sqrt_SNo_nonneg_prop1asqrt_SNo_nonneg_prop1a : ∀ x0 . SNo x0SNoLe 0 x0(∀ x1 . x1SNoS_ (SNoLev x0)SNoLe 0 x1and (and (SNo (sqrt_SNo_nonneg x1)) (SNoLe 0 (sqrt_SNo_nonneg x1))) (mul_SNo (sqrt_SNo_nonneg x1) (sqrt_SNo_nonneg x1) = x1))∀ x1 . nat_p x1and (∀ x2 . x2ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x1) 0and (and (SNo x2) (SNoLe 0 x2)) (SNoLt (mul_SNo x2 x2) x0)) (∀ x2 . x2ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x1) 1and (and (SNo x2) (SNoLe 0 x2)) (SNoLt x0 (mul_SNo x2 x2)))
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Known famunionEfamunionE : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2famunion x0 x1∀ x3 : ο . (∀ x4 . and (x4x0) (x2x1 x4)x3)x3
Param ordinalordinal : ιο
Known ordinal_linearordinal_linear : ∀ x0 x1 . ordinal x0ordinal x1or (x0x1) (x1x0)
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known SNo_sqrtaux_monSNo_sqrtaux_mon : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . nat_p x2∀ x3 . nat_p x3x2x3and (ap (SNo_sqrtaux x0 x1 x2) 0ap (SNo_sqrtaux x0 x1 x3) 0) (ap (SNo_sqrtaux x0 x1 x2) 1ap (SNo_sqrtaux x0 x1 x3) 1)
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Known mul_SNo_distrLmul_SNo_distrL : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (add_SNo x1 x2) = add_SNo (mul_SNo x0 x1) (mul_SNo x0 x2)
Param div_SNodiv_SNo : ιιι
Known mul_div_SNo_invLmul_div_SNo_invL : ∀ x0 x1 . SNo x0SNo x1(x1 = 0∀ x2 : ο . x2)mul_SNo (div_SNo x0 x1) x1 = x0
Known pos_mul_SNo_Lt'pos_mul_SNo_Lt : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt 0 x2SNoLt x0 x1SNoLt (mul_SNo x0 x2) (mul_SNo x1 x2)
Known SNo_div_SNoSNo_div_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (div_SNo x0 x1)
Known nat_ordsuccnat_ordsucc : ∀ x0 . nat_p x0nat_p (ordsucc x0)
Param SNo_sqrtauxsetSNo_sqrtauxset : ιιιι
Known SNo_sqrtaux_SSNo_sqrtaux_S : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . nat_p x2SNo_sqrtaux x0 x1 (ordsucc x2) = lam 2 (λ x4 . If_i (x4 = 0) (binunion (ap (SNo_sqrtaux x0 x1 x2) 0) (SNo_sqrtauxset (ap (SNo_sqrtaux x0 x1 x2) 0) (ap (SNo_sqrtaux x0 x1 x2) 1) x0)) (binunion (binunion (ap (SNo_sqrtaux x0 x1 x2) 1) (SNo_sqrtauxset (ap (SNo_sqrtaux x0 x1 x2) 0) (ap (SNo_sqrtaux x0 x1 x2) 0) x0)) (SNo_sqrtauxset (ap (SNo_sqrtaux x0 x1 x2) 1) (ap (SNo_sqrtaux x0 x1 x2) 1) x0)))
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Known SNo_sqrtauxset_ISNo_sqrtauxset_I : ∀ x0 x1 x2 x3 . x3x0∀ x4 . x4x1SNoLt 0 (add_SNo x3 x4)div_SNo (add_SNo x2 (mul_SNo x3 x4)) (add_SNo x3 x4)SNo_sqrtauxset x0 x1 x2
Known add_SNo_0Radd_SNo_0R : ∀ x0 . SNo x0add_SNo x0 0 = x0
Known add_SNo_Lt2add_SNo_Lt2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x1 x2SNoLt (add_SNo x0 x1) (add_SNo x0 x2)
Known mul_SNo_nonneg_nonnegmul_SNo_nonneg_nonneg : ∀ x0 x1 . SNo x0SNo x1SNoLe 0 x0SNoLe 0 x1SNoLe 0 (mul_SNo x0 x1)
Theorem sqrt_SNo_nonneg_prop1dsqrt_SNo_nonneg_prop1d : ∀ x0 . SNo x0SNoLe 0 x0(∀ x1 . x1SNoS_ (SNoLev x0)SNoLe 0 x1and (and (SNo (sqrt_SNo_nonneg x1)) (SNoLe 0 (sqrt_SNo_nonneg x1))) (mul_SNo (sqrt_SNo_nonneg x1) (sqrt_SNo_nonneg x1) = x1))SNoCutP (famunion omega (λ x1 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x1) 0)) (famunion omega (λ x1 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x1) 1))SNoLe 0 (SNoCut (famunion omega (λ x1 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x1) 0)) (famunion omega (λ x1 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x1) 1)))SNoLt (mul_SNo (SNoCut (famunion omega (λ x1 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x1) 0)) (famunion omega (λ x1 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x1) 1))) (SNoCut (famunion omega (λ x1 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x1) 0)) (famunion omega (λ x1 . ap (SNo_sqrtaux x0 sqrt_SNo_nonneg x1) 1)))) x0False (proof)