Search for blocks/addresses/...

Proofgold Asset

asset id
f4db5003f3e8843f870f2ff0273b2fd086f540c37ba5df9d63bb1573e2880674
asset hash
3d48a7adf85e8bba855e10f6fbee69c6cf7e3f9056220f6bc04aeb5f2fdd42d8
bday / block
18494
tx
d43b3..
preasset
doc published by Pr4zB..
Definition ChurchNums_3x8_3_lt1_swap_1_2_ge1_rot2 := λ x0 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . λ x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . λ x2 x3 x4 : (ι → ι)ι → ι . x0 (x1 x2 x4 x4 x4 x4 x4 x4 x4) (x1 x4 x3 x3 x3 x3 x3 x3 x3) (x1 x3 x2 x2 x2 x2 x2 x2 x2)
Definition ChurchNums_8_perm_0_7_6_5_4_3_2_1 := λ x0 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . λ x1 x2 x3 x4 x5 x6 x7 x8 : (ι → ι)ι → ι . x0 x1 x8 x7 x6 x5 x4 x3 x2
Definition ChurchNum_3ary_proj_p := λ x0 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x1 : (((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι) → ο . x1 (λ x2 x3 x4 : (ι → ι)ι → ι . x2)x1 (λ x2 x3 x4 : (ι → ι)ι → ι . x3)x1 (λ x2 x3 x4 : (ι → ι)ι → ι . x4)x1 x0
Definition ChurchNum_8ary_proj_p := λ x0 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x1 : (((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι) → ο . x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 : (ι → ι)ι → ι . x2)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 : (ι → ι)ι → ι . x3)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 : (ι → ι)ι → ι . x4)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 : (ι → ι)ι → ι . x5)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 : (ι → ι)ι → ι . x6)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 : (ι → ι)ι → ι . x7)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 : (ι → ι)ι → ι . x8)x1 (λ x2 x3 x4 x5 x6 x7 x8 x9 : (ι → ι)ι → ι . x9)x1 x0
Known cef55.. : ChurchNum_3ary_proj_p (λ x0 x1 x2 : (ι → ι)ι → ι . x0)
Known a5963.. : ChurchNum_3ary_proj_p (λ x0 x1 x2 : (ι → ι)ι → ι . x2)
Known 18961.. : ChurchNum_3ary_proj_p (λ x0 x1 x2 : (ι → ι)ι → ι . x1)
Theorem 424ab.. : ∀ x0 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x1ChurchNum_3ary_proj_p (ChurchNums_3x8_3_lt1_swap_1_2_ge1_rot2 x0 x1) (proof)
Known 208f3.. : ChurchNum_8ary_proj_p (λ x0 x1 x2 x3 x4 x5 x6 x7 : (ι → ι)ι → ι . x0)
Known 7734d.. : ChurchNum_8ary_proj_p (λ x0 x1 x2 x3 x4 x5 x6 x7 : (ι → ι)ι → ι . x7)
Known 94187.. : ChurchNum_8ary_proj_p (λ x0 x1 x2 x3 x4 x5 x6 x7 : (ι → ι)ι → ι . x6)
Known 0ab9f.. : ChurchNum_8ary_proj_p (λ x0 x1 x2 x3 x4 x5 x6 x7 : (ι → ι)ι → ι . x5)
Known 3a83b.. : ChurchNum_8ary_proj_p (λ x0 x1 x2 x3 x4 x5 x6 x7 : (ι → ι)ι → ι . x4)
Known 446d8.. : ChurchNum_8ary_proj_p (λ x0 x1 x2 x3 x4 x5 x6 x7 : (ι → ι)ι → ι . x3)
Known e5caa.. : ChurchNum_8ary_proj_p (λ x0 x1 x2 x3 x4 x5 x6 x7 : (ι → ι)ι → ι . x2)
Known ef1ab.. : ChurchNum_8ary_proj_p (λ x0 x1 x2 x3 x4 x5 x6 x7 : (ι → ι)ι → ι . x1)
Theorem 6bdd9.. : ∀ x0 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_8ary_proj_p x0ChurchNum_8ary_proj_p (ChurchNums_8_perm_0_7_6_5_4_3_2_1 x0) (proof)
Definition TwoRamseyGraph_4_5_24_ChurchNums_3x8 := λ x0 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . λ x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . λ x2 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . λ x3 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . λ x4 . x0 (x1 (x2 (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5))) (x2 (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5))) (x2 (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6))) (x2 (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5))) (x2 (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6))) (x2 (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6))) (x2 (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6))) (x2 (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)))) (x1 (x2 (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5))) (x2 (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6))) (x2 (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6))) (x2 (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6))) (x2 (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6))) (x2 (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6))) (x2 (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5))) (x2 (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5)))) (x1 (x2 (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6))) (x2 (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6))) (x2 (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6))) (x2 (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5))) (x2 (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6))) (x2 (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5))) (x2 (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5))) (x2 (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)))) (λ x5 . x4)
Theorem 33bbb.. : ∀ x0 x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x2 x3 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_3ary_proj_p x1ChurchNum_8ary_proj_p x2ChurchNum_8ary_proj_p x3TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x2 x1 x3 = TwoRamseyGraph_4_5_24_ChurchNums_3x8 (ChurchNums_3x8_3_lt1_swap_1_2_ge1_rot2 x0 x2) (ChurchNums_8_perm_0_7_6_5_4_3_2_1 x2) (ChurchNums_3x8_3_lt1_swap_1_2_ge1_rot2 x1 x3) (ChurchNums_8_perm_0_7_6_5_4_3_2_1 x3) (proof)