Search for blocks/addresses/...
Proofgold Asset
asset id
f7dd0c1fcb51c7a505e1972139a31185c617fa4d1e72e69279f67a5cbfb15dc9
asset hash
a570b821ede21c64b23d59000edcbcc87e5aa7bffa62f197f374a410efdb7893
bday / block
3197
tx
d00af..
preasset
doc published by
PrJJf..
Known
Eps_i_ex
Eps_i_R2
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
Eps_i
x0
)
Known
39854..
andEL
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x0
Known
eb789..
andER
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x1
Known
7f305..
EmptyAx
:
not
(
∀ x0 : ο .
(
∀ x1 .
In
x1
0
⟶
x0
)
⟶
x0
)
Known
b4782..
contra
:
∀ x0 : ο .
(
not
x0
⟶
False
)
⟶
x0
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Known
8106d..
notI
:
∀ x0 : ο .
(
x0
⟶
False
)
⟶
not
x0
Known
5f823..
not_ex_all_demorgan_i
:
∀ x0 :
ι → ο
.
not
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
∀ x1 .
not
(
x0
x1
)
Known
0ff1b..
:
∀ x0 x1 : ο .
not
(
x0
⟶
x1
)
⟶
and
x0
(
not
x1
)
Theorem
60b3a..
:
(
∀ x0 : ο .
(
∀ x1 .
and
(
Subq
x1
(
binrep
(
Power
(
Power
(
Power
0
)
)
)
(
Power
0
)
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
∀ x4 .
not
(
exactly3
x1
)
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
Subq
x6
x3
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
ordinal
x1
)
(
and
(
and
(
and
(
not
(
Subq
x6
x8
)
)
(
nat_p
0
)
)
(
atleast3
x4
)
)
(
and
(
not
(
atleast3
x6
)
)
(
and
(
exactly4
(
setprod
x6
x6
)
)
(
and
(
TransSet
x8
⟶
(
and
(
and
(
SNoLe
x6
x1
)
(
atleast4
(
binrep
(
binrep
(
binrep
(
Power
(
binrep
(
Power
(
Power
0
)
)
0
)
)
(
Power
(
Power
0
)
)
)
(
Power
0
)
)
0
)
⟶
exactly1of3
(
not
(
atleast2
(
Power
(
binrep
(
Power
(
Power
0
)
)
0
)
)
)
)
(
SNo
x6
)
(
SNoLe
x8
x6
)
)
)
(
not
(
exactly5
0
)
)
⟶
not
(
atleast2
x8
)
)
⟶
nat_p
x8
)
(
not
(
nat_p
x3
)
)
)
)
)
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
In
x5
0
)
(
∀ x6 .
In
x6
x5
⟶
∀ x7 : ο .
(
∀ x8 .
atleast2
x8
⟶
x7
)
⟶
x7
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
)
⟶
∀ x0 : ο .
x0
(proof)