Search for blocks/addresses/...
Proofgold Asset
asset id
9fd6d7406c57d764081c4ae73395df1b8f016a4199a265c2fcedd86da03c2839
asset hash
f8ade6c802356dc330837d6141b56f34194407b3b300cc5e7c672628b1530415
bday / block
36289
tx
524ce..
preasset
doc published by
Pr4zB..
Param
4402e..
:
ι
→
(
ι
→
ι
→
ο
) →
ο
Param
cf2df..
:
ι
→
(
ι
→
ι
→
ο
) →
ο
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
2f869..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 .
∀ x5 : ο .
(
(
x1
=
x2
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
not
(
x0
x1
x2
)
⟶
not
(
x0
x1
x3
)
⟶
not
(
x0
x2
x3
)
⟶
not
(
x0
x1
x4
)
⟶
not
(
x0
x2
x4
)
⟶
x0
x3
x4
⟶
x5
)
⟶
x5
Definition
87c36..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 .
∀ x6 : ο .
(
2f869..
x0
x1
x2
x3
x4
⟶
(
x1
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x2
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x4
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
not
(
x0
x1
x5
)
⟶
x0
x2
x5
⟶
not
(
x0
x3
x5
)
⟶
x0
x4
x5
⟶
x6
)
⟶
x6
Definition
6648a..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
87c36..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x0
x1
x6
)
⟶
x0
x2
x6
⟶
x0
x3
x6
⟶
not
(
x0
x4
x6
)
⟶
not
(
x0
x5
x6
)
⟶
x7
)
⟶
x7
Definition
df271..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
6648a..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
not
(
x0
x3
x7
)
⟶
not
(
x0
x4
x7
)
⟶
not
(
x0
x5
x7
)
⟶
x0
x6
x7
⟶
x8
)
⟶
x8
Definition
35e15..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
df271..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
de95d..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
35e15..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
x0
x1
x9
⟶
x0
x2
x9
⟶
x0
x3
x9
⟶
not
(
x0
x4
x9
)
⟶
not
(
x0
x5
x9
)
⟶
not
(
x0
x6
x9
)
⟶
not
(
x0
x7
x9
)
⟶
not
(
x0
x8
x9
)
⟶
x10
)
⟶
x10
Definition
2158f..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
df271..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
x0
x3
x8
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
f444d..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
2158f..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
x0
x1
x9
⟶
x0
x2
x9
⟶
x0
x3
x9
⟶
not
(
x0
x4
x9
)
⟶
not
(
x0
x5
x9
)
⟶
not
(
x0
x6
x9
)
⟶
not
(
x0
x7
x9
)
⟶
not
(
x0
x8
x9
)
⟶
x10
)
⟶
x10
Definition
8b6ad..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 .
∀ x5 : ο .
(
(
x1
=
x2
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
not
(
x0
x1
x2
)
⟶
not
(
x0
x1
x3
)
⟶
not
(
x0
x2
x3
)
⟶
not
(
x0
x1
x4
)
⟶
not
(
x0
x2
x4
)
⟶
not
(
x0
x3
x4
)
⟶
x5
)
⟶
x5
Definition
62523..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 .
∀ x6 : ο .
(
8b6ad..
x0
x1
x2
x3
x4
⟶
(
x1
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x2
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x4
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
not
(
x0
x1
x5
)
⟶
not
(
x0
x2
x5
)
⟶
not
(
x0
x3
x5
)
⟶
x0
x4
x5
⟶
x6
)
⟶
x6
Definition
a542b..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
62523..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x0
x1
x6
)
⟶
not
(
x0
x2
x6
)
⟶
x0
x3
x6
⟶
not
(
x0
x4
x6
)
⟶
x0
x5
x6
⟶
x7
)
⟶
x7
Definition
2fb86..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
a542b..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
x0
x2
x7
⟶
not
(
x0
x3
x7
)
⟶
not
(
x0
x4
x7
)
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
14b71..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
2fb86..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
x0
x2
x8
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
286f8..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
14b71..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
not
(
x0
x2
x9
)
⟶
x0
x3
x9
⟶
x0
x4
x9
⟶
not
(
x0
x5
x9
)
⟶
not
(
x0
x6
x9
)
⟶
x0
x7
x9
⟶
not
(
x0
x8
x9
)
⟶
x10
)
⟶
x10
Definition
c5756..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 .
∀ x6 : ο .
(
8b6ad..
x0
x1
x2
x3
x4
⟶
(
x1
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x2
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x4
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
not
(
x0
x1
x5
)
⟶
not
(
x0
x2
x5
)
⟶
x0
x3
x5
⟶
x0
x4
x5
⟶
x6
)
⟶
x6
Definition
2de86..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
c5756..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x0
x1
x6
)
⟶
x0
x2
x6
⟶
not
(
x0
x3
x6
)
⟶
x0
x4
x6
⟶
not
(
x0
x5
x6
)
⟶
x7
)
⟶
x7
Definition
3109c..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
2de86..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
not
(
x0
x3
x7
)
⟶
x0
x4
x7
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
7f9b0..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
3109c..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
x0
x3
x8
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
a2b8b..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
7f9b0..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
x0
x2
x9
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
x0
x5
x9
⟶
not
(
x0
x6
x9
)
⟶
x0
x7
x9
⟶
not
(
x0
x8
x9
)
⟶
x10
)
⟶
x10
Definition
36d58..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
2de86..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
x0
x3
x7
⟶
x0
x4
x7
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
d2827..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
36d58..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
x0
x3
x8
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
62ac7..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
d2827..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
x0
x2
x9
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
x0
x5
x9
⟶
not
(
x0
x6
x9
)
⟶
x0
x7
x9
⟶
not
(
x0
x8
x9
)
⟶
x10
)
⟶
x10
Definition
2c550..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
14b71..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
not
(
x0
x2
x9
)
⟶
x0
x3
x9
⟶
x0
x4
x9
⟶
not
(
x0
x5
x9
)
⟶
not
(
x0
x6
x9
)
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
fba9e..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
62523..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x0
x1
x6
)
⟶
x0
x2
x6
⟶
x0
x3
x6
⟶
not
(
x0
x4
x6
)
⟶
not
(
x0
x5
x6
)
⟶
x7
)
⟶
x7
Definition
a5b26..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
fba9e..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
x0
x3
x7
⟶
not
(
x0
x4
x7
)
⟶
x0
x5
x7
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
cb670..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
a5b26..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
x0
x3
x8
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
f0823..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
cb670..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
x0
x2
x9
⟶
not
(
x0
x3
x9
)
⟶
x0
x4
x9
⟶
not
(
x0
x5
x9
)
⟶
not
(
x0
x6
x9
)
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
659a1..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
62523..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x0
x1
x6
)
⟶
x0
x2
x6
⟶
x0
x3
x6
⟶
not
(
x0
x4
x6
)
⟶
x0
x5
x6
⟶
x7
)
⟶
x7
Definition
ba9c9..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
659a1..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
x0
x3
x7
⟶
not
(
x0
x4
x7
)
⟶
x0
x5
x7
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
70101..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
ba9c9..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
x0
x3
x8
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
5f6ee..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
70101..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
x0
x2
x9
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
not
(
x0
x5
x9
)
⟶
not
(
x0
x6
x9
)
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
8c395..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
fba9e..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
x0
x3
x7
⟶
not
(
x0
x4
x7
)
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
c0878..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
8c395..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
x0
x3
x8
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
fc090..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
c0878..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
x0
x2
x9
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
x0
x5
x9
⟶
not
(
x0
x6
x9
)
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
f3cdc..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
8c395..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
x0
x2
x8
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
adf05..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
f3cdc..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
not
(
x0
x2
x9
)
⟶
x0
x3
x9
⟶
not
(
x0
x4
x9
)
⟶
x0
x5
x9
⟶
not
(
x0
x6
x9
)
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
91113..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
cb670..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
x0
x2
x9
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
x0
x5
x9
⟶
not
(
x0
x6
x9
)
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
5e84d..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
62523..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x0
x1
x6
)
⟶
not
(
x0
x2
x6
)
⟶
x0
x3
x6
⟶
not
(
x0
x4
x6
)
⟶
not
(
x0
x5
x6
)
⟶
x7
)
⟶
x7
Definition
58366..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
5e84d..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
x0
x2
x7
⟶
not
(
x0
x3
x7
)
⟶
not
(
x0
x4
x7
)
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
3b695..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
58366..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
x0
x2
x8
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
d2e51..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
3b695..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
x0
x1
x9
⟶
not
(
x0
x2
x9
)
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
not
(
x0
x5
x9
)
⟶
x0
x6
x9
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
4b4dd..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
cb670..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
x0
x1
x9
⟶
not
(
x0
x2
x9
)
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
not
(
x0
x5
x9
)
⟶
x0
x6
x9
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
9eede..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
3b695..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
x0
x1
x9
⟶
not
(
x0
x2
x9
)
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
x0
x5
x9
⟶
x0
x6
x9
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
796c4..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
2de86..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
x0
x3
x7
⟶
not
(
x0
x4
x7
)
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
0c647..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
796c4..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
x0
x2
x8
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
e2fd7..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
0c647..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
not
(
x0
x2
x9
)
⟶
not
(
x0
x3
x9
)
⟶
x0
x4
x9
⟶
not
(
x0
x5
x9
)
⟶
not
(
x0
x6
x9
)
⟶
x0
x7
x9
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
b8d2a..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
14b71..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
not
(
x0
x2
x9
)
⟶
x0
x3
x9
⟶
x0
x4
x9
⟶
not
(
x0
x5
x9
)
⟶
not
(
x0
x6
x9
)
⟶
x0
x7
x9
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
a9907..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
cb670..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
x0
x2
x9
⟶
not
(
x0
x3
x9
)
⟶
x0
x4
x9
⟶
not
(
x0
x5
x9
)
⟶
not
(
x0
x6
x9
)
⟶
x0
x7
x9
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
ee178..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
70101..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
x0
x2
x9
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
not
(
x0
x5
x9
)
⟶
not
(
x0
x6
x9
)
⟶
x0
x7
x9
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
72d65..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
c0878..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
x0
x2
x9
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
x0
x5
x9
⟶
not
(
x0
x6
x9
)
⟶
x0
x7
x9
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
21422..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
2de86..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
x0
x3
x7
⟶
not
(
x0
x4
x7
)
⟶
not
(
x0
x5
x7
)
⟶
x0
x6
x7
⟶
x8
)
⟶
x8
Definition
f0d5b..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
21422..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
x0
x4
x8
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
72e0a..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
f0d5b..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
x0
x2
x9
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
not
(
x0
x5
x9
)
⟶
not
(
x0
x6
x9
)
⟶
x0
x7
x9
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
98014..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
⟶
4402e..
x1
x2
⟶
cf2df..
x1
x2
⟶
∀ x3 .
x3
∈
x1
⟶
x0
⊆
setminus
x1
(
Sing
x3
)
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
35e15..
x2
x4
x5
x6
x7
x8
x9
x10
x11
⟶
∀ x12 : ο .
(
x2
x4
x3
⟶
x2
x5
x3
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
not
(
x2
x11
x3
)
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
x2
x4
x3
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
not
(
x2
x5
x3
)
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
x2
x5
x3
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
x2
x4
x3
⟶
x2
x5
x3
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
x2
x7
x3
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
x2
x7
x3
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
x2
x7
x3
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
x2
x4
x3
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
x2
x7
x3
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
not
(
x2
x5
x3
)
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
x2
x9
x3
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
x2
x9
x3
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
x2
x7
x3
⟶
not
(
x2
x8
x3
)
⟶
x2
x9
x3
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
x2
x7
x3
⟶
not
(
x2
x8
x3
)
⟶
x2
x9
x3
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
x2
x9
x3
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
x2
x9
x3
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
x2
x10
x3
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
x2
x10
x3
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
not
(
x2
x5
x3
)
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
x2
x10
x3
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
x2
x5
x3
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
x2
x10
x3
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
x2
x7
x3
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
x2
x10
x3
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
x2
x7
x3
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
x2
x10
x3
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
not
(
x2
x9
x3
)
⟶
x2
x10
x3
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
not
(
x2
x5
x3
)
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
not
(
x2
x9
x3
)
⟶
x2
x10
x3
⟶
x2
x11
x3
⟶
x12
)
⟶
x12
Known
ffe23..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
35e15..
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
35e15..
x1
x2
x4
x3
x6
x5
x7
x8
x9
Known
neq_i_sym
neq_i_sym
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Known
setminus_Subq
setminus_Subq
:
∀ x0 x1 .
setminus
x0
x1
⊆
x0
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Theorem
828f2..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
⟶
4402e..
x1
x2
⟶
cf2df..
x1
x2
⟶
∀ x3 .
x3
∈
x1
⟶
x0
⊆
setminus
x1
(
Sing
x3
)
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
35e15..
x2
x4
x5
x6
x7
x8
x9
x10
x11
⟶
∀ x12 : ο .
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
de95d..
x2
x13
x14
x15
x16
x17
x18
x19
x20
x3
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
f444d..
x2
x13
x14
x3
x15
x16
x17
x18
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
286f8..
x2
x13
x3
x14
x15
x16
x17
x18
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
a2b8b..
x2
x13
x14
x15
x16
x17
x18
x3
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
62ac7..
x2
x13
x14
x15
x16
x17
x18
x3
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
2c550..
x2
x13
x14
x15
x16
x17
x18
x3
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
f0823..
x2
x13
x14
x15
x16
x17
x18
x3
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
5f6ee..
x2
x13
x14
x15
x16
x3
x17
x18
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
fc090..
x2
x13
x14
x15
x16
x3
x17
x18
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
adf05..
x2
x13
x14
x15
x16
x3
x17
x18
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
91113..
x2
x13
x14
x15
x16
x3
x17
x18
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
d2e51..
x2
x13
x14
x15
x16
x3
x17
x18
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
4b4dd..
x2
x13
x14
x15
x16
x17
x3
x18
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
9eede..
x2
x13
x14
x15
x16
x3
x17
x18
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
e2fd7..
x2
x13
x14
x15
x16
x17
x18
x3
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
b8d2a..
x2
x13
x14
x15
x16
x17
x18
x3
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
a9907..
x2
x13
x14
x15
x16
x17
x18
x3
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
ee178..
x2
x13
x14
x15
x16
x17
x18
x3
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
72d65..
x2
x13
x14
x15
x16
x17
x18
x3
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
72e0a..
x2
x13
x14
x15
x16
x17
x18
x3
x19
x20
⟶
x12
)
⟶
x12
(proof)