Search for blocks/addresses/...
Proofgold Asset
asset id
fa92ae8e55c88ac5ec554a1edd464fcd649a8f69d069f6a808e0e8d697f97d23
asset hash
95843f1842963679abee09bdf6823c68bf94f9f2592b67d1dc1b734fb1ab6423
bday / block
35148
tx
1f8be..
preasset
doc published by
PrPhD..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Theorem
1d20f..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 :
ι → ι
.
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 .
∀ x5 x6 :
ι → ο
.
∀ x7 x8 x9 .
∀ x10 :
ι →
ι →
ι →
ι → ι
.
∀ x11 :
ι →
ι → ι
.
∀ x12 :
ι → ο
.
∀ x13 x14 .
∀ x15 x16 :
ι → ι
.
∀ x17 x18 :
ι →
ι →
ι → ι
.
∀ x19 :
ι →
ι → ι
.
∀ x20 :
ι →
ι →
ι → ι
.
∀ x21 :
ι → ι
.
∀ x22 x23 :
ι →
ι → ι
.
∀ x24 :
ι → ι
.
∀ x25 x26 x27 .
∀ x28 :
ι → ο
.
∀ x29 .
∀ x30 :
ι → ο
.
∀ x31 .
∀ x32 :
ι → ο
.
∀ x33 .
∀ x34 :
ι → ο
.
(
∀ x35 x36 .
x34
x36
⟶
(
x36
=
x35
⟶
False
)
⟶
x34
x35
⟶
False
)
⟶
(
∀ x35 x36 .
x0
x35
x36
⟶
x34
x36
⟶
False
)
⟶
(
∀ x35 .
x34
x35
⟶
(
x35
=
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 x37 .
x0
x35
x36
⟶
x2
x36
(
x1
x37
)
⟶
x34
x37
⟶
False
)
⟶
(
∀ x35 x36 x37 .
x0
x36
x37
⟶
x2
x37
(
x1
x35
)
⟶
(
x2
x36
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
x3
x36
x35
⟶
(
x2
x36
(
x1
x35
)
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
x2
x36
(
x1
x35
)
⟶
(
x3
x36
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
x2
x35
x36
⟶
(
x34
x36
⟶
False
)
⟶
(
x0
x35
x36
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
x0
x36
x35
⟶
(
x2
x36
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
(
x3
x35
x35
⟶
False
)
⟶
False
)
⟶
(
x32
x31
⟶
False
)
⟶
(
x34
x4
⟶
False
)
⟶
(
(
x30
x29
⟶
False
)
⟶
False
)
⟶
(
(
x5
x29
⟶
False
)
⟶
False
)
⟶
(
(
x28
x27
⟶
False
)
⟶
False
)
⟶
(
(
x6
x27
⟶
False
)
⟶
False
)
⟶
(
(
x5
x27
⟶
False
)
⟶
False
)
⟶
(
(
x32
x7
⟶
False
)
⟶
False
)
⟶
(
x34
x7
⟶
False
)
⟶
(
(
x34
x8
⟶
False
)
⟶
False
)
⟶
(
(
x5
x26
⟶
False
)
⟶
False
)
⟶
(
x34
x26
⟶
False
)
⟶
(
(
x6
x25
⟶
False
)
⟶
False
)
⟶
(
(
x5
x25
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
(
x34
x35
⟶
False
)
⟶
x5
x35
⟶
x34
(
x24
x35
)
⟶
False
)
⟶
(
∀ x35 .
x32
x35
⟶
x5
x35
⟶
(
x32
(
x24
x35
)
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
x34
x36
⟶
x5
x36
⟶
(
x34
(
x23
x36
x35
)
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
x5
x36
⟶
x34
x35
⟶
(
x34
(
x23
x36
x35
)
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
x34
x36
⟶
x5
x36
⟶
(
x34
(
x22
x36
x35
)
⟶
False
)
⟶
False
)
⟶
(
(
x34
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
x5
x36
⟶
x34
x35
⟶
(
x34
(
x22
x36
x35
)
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x34
x35
⟶
(
x34
(
x24
x35
)
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
(
x2
(
x21
x35
)
x35
⟶
False
)
⟶
False
)
⟶
(
(
x34
x9
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 x37 .
x5
x37
⟶
x6
x37
⟶
(
x0
(
x19
x37
(
x20
x35
x36
x37
)
)
x36
⟶
False
)
⟶
(
x0
(
x20
x35
x36
x37
)
x35
⟶
False
)
⟶
(
x35
=
x23
x37
x36
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 x37 .
x5
x37
⟶
x6
x37
⟶
(
x0
(
x20
x35
x36
x37
)
(
x24
x37
)
⟶
False
)
⟶
(
x0
(
x20
x35
x36
x37
)
x35
⟶
False
)
⟶
(
x35
=
x23
x37
x36
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 x37 .
x5
x37
⟶
x6
x37
⟶
x0
(
x20
x35
x36
x37
)
x35
⟶
x0
(
x20
x35
x36
x37
)
(
x24
x37
)
⟶
x0
(
x19
x37
(
x20
x35
x36
x37
)
)
x36
⟶
(
x35
=
x23
x37
x36
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 x37 x38 .
x5
x38
⟶
x6
x38
⟶
x37
=
x23
x38
x36
⟶
x0
x35
(
x24
x38
)
⟶
x0
(
x19
x38
x35
)
x36
⟶
(
x0
x35
x37
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 x37 x38 .
x5
x38
⟶
x6
x38
⟶
x37
=
x23
x38
x36
⟶
x0
x35
x37
⟶
(
x0
(
x19
x38
x35
)
x36
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 x37 x38 .
x5
x38
⟶
x6
x38
⟶
x36
=
x23
x38
x35
⟶
x0
x37
x36
⟶
(
x0
x37
(
x24
x38
)
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 x37 .
x5
x37
⟶
x6
x37
⟶
(
x18
x35
x36
x37
=
x19
x37
(
x17
x35
x36
x37
)
⟶
False
)
⟶
(
x0
(
x18
x35
x36
x37
)
x35
⟶
False
)
⟶
(
x35
=
x22
x37
x36
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 x37 .
x5
x37
⟶
x6
x37
⟶
(
x0
(
x17
x35
x36
x37
)
x36
⟶
False
)
⟶
(
x0
(
x18
x35
x36
x37
)
x35
⟶
False
)
⟶
(
x35
=
x22
x37
x36
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 x37 .
x5
x37
⟶
x6
x37
⟶
(
x0
(
x17
x35
x36
x37
)
(
x24
x37
)
⟶
False
)
⟶
(
x0
(
x18
x35
x36
x37
)
x35
⟶
False
)
⟶
(
x35
=
x22
x37
x36
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 x37 x38 .
x5
x38
⟶
x6
x38
⟶
x0
(
x18
x37
x36
x38
)
x37
⟶
x0
x35
(
x24
x38
)
⟶
x0
x35
x36
⟶
x18
x37
x36
x38
=
x19
x38
x35
⟶
(
x37
=
x22
x38
x36
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 x37 x38 x39 .
x5
x39
⟶
x6
x39
⟶
x38
=
x22
x39
x37
⟶
x0
x35
(
x24
x39
)
⟶
x0
x35
x37
⟶
x36
=
x19
x39
x35
⟶
(
x0
x36
x38
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 x37 x38 .
x5
x38
⟶
x6
x38
⟶
x37
=
x22
x38
x36
⟶
x0
x35
x37
⟶
(
x35
=
x19
x38
(
x10
x35
x37
x36
x38
)
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 x37 x38 .
x5
x38
⟶
x6
x38
⟶
x37
=
x22
x38
x36
⟶
x0
x35
x37
⟶
(
x0
(
x10
x35
x37
x36
x38
)
x36
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 x37 x38 .
x5
x38
⟶
x6
x38
⟶
x37
=
x22
x38
x36
⟶
x0
x35
x37
⟶
(
x0
(
x10
x35
x37
x36
x38
)
(
x24
x38
)
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x5
x35
⟶
x6
x35
⟶
x16
x35
=
x15
x35
⟶
(
x28
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x5
x35
⟶
x6
x35
⟶
(
x19
x35
(
x16
x35
)
=
x19
x35
(
x15
x35
)
⟶
False
)
⟶
(
x28
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x5
x35
⟶
x6
x35
⟶
(
x0
(
x15
x35
)
(
x24
x35
)
⟶
False
)
⟶
(
x28
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x5
x35
⟶
x6
x35
⟶
(
x0
(
x16
x35
)
(
x24
x35
)
⟶
False
)
⟶
(
x28
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 x37 .
x5
x37
⟶
x6
x37
⟶
x28
x37
⟶
x0
x35
(
x24
x37
)
⟶
x0
x36
(
x24
x37
)
⟶
x19
x37
x35
=
x19
x37
x36
⟶
(
x35
=
x36
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
x0
(
x11
x35
x36
)
x35
⟶
(
x3
x36
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
(
x0
(
x11
x35
x36
)
x36
⟶
False
)
⟶
(
x3
x36
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 x37 .
x3
x36
x37
⟶
x0
x35
x36
⟶
(
x0
x35
x37
⟶
False
)
⟶
False
)
⟶
(
(
x33
=
x9
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x34
x35
⟶
x5
x35
⟶
(
x30
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x34
x35
⟶
x5
x35
⟶
(
x5
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x34
x35
⟶
x5
x35
⟶
(
x12
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x34
x35
⟶
x5
x35
⟶
(
x5
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
(
x32
x35
⟶
False
)
⟶
x34
x35
⟶
False
)
⟶
(
∀ x35 x36 .
x5
x36
⟶
x2
x35
(
x1
x36
)
⟶
(
x5
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x34
x35
⟶
x5
x35
⟶
x6
x35
⟶
(
x28
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x34
x35
⟶
x5
x35
⟶
x6
x35
⟶
(
x6
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x34
x35
⟶
x5
x35
⟶
x6
x35
⟶
(
x5
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x34
x35
⟶
(
x32
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x34
x35
⟶
(
x5
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 .
x34
x35
⟶
(
x6
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x35 x36 .
x0
x35
x36
⟶
x0
x36
x35
⟶
False
)
⟶
(
x3
(
x23
x14
(
x22
x14
x13
)
)
x13
⟶
False
)
⟶
(
(
x28
x14
⟶
False
)
⟶
False
)
⟶
(
(
x6
x14
⟶
False
)
⟶
False
)
⟶
(
(
x5
x14
⟶
False
)
⟶
False
)
⟶
False
(proof)