∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . 62ee1.. x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . prim1 x7 x0 ⟶ ∀ x8 . prim1 x8 x0 ⟶ ∀ x9 . prim1 x9 x0 ⟶ ∀ x10 . prim1 x10 x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ and (x7 = x9) (x8 = x10)) ⟶ ∀ x7 : ο . ((∀ x8 . prim1 x8 x0 ⟶ ∀ x9 . prim1 x9 x0 ⟶ prim1 (x6 x8 x9) (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)) ⟶ (∀ x8 . prim1 x8 x0 ⟶ ∀ x9 . prim1 x9 x0 ⟶ prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x6 x8 x9 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12) = x8) ⟶ (∀ x8 . prim1 x8 x0 ⟶ ∀ x9 . prim1 x9 x0 ⟶ prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x6 x8 x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x6 x8 x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12) = x9) ⟶ (∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6) ⟶ prim1 (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0 ⟶ (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x8 = x6 x9 x12) ⟶ x11) ⟶ x11) ⟶ x10) ⟶ x10)) x0) ⟶ (∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6) ⟶ prim1 (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0 ⟶ x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (prim1 x12 x0 ⟶ (∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x8 = x6 x12 x15) ⟶ x14) ⟶ x14) ⟶ x13) ⟶ x13)) x9 ⟶ x10) ⟶ x10)) x0) ⟶ (∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6) ⟶ ∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6) ⟶ prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x8 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12) = prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x9 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12) ⟶ prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12) = prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12) ⟶ x8 = x9) ⟶ prim1 (x6 x1 x1) (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6) ⟶ prim1 (x6 x2 x1) (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6) ⟶ (∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6) ⟶ ∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6) ⟶ prim1 (x6 (x3 (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0 ⟶ (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x8 = x6 x10 x13) ⟶ x12) ⟶ x12) ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0 ⟶ (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x9 = x6 x10 x13) ⟶ x12) ⟶ x12) ⟶ x11) ⟶ x11))) (x3 (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0 ⟶ x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0 ⟶ (∀ x15 : ο . (∀ x16 . and (prim1 x16 x0) (x8 = x6 x13 x16) ⟶ x15) ⟶ x15) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0 ⟶ x9 = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0 ⟶ (∀ x15 : ο . (∀ x16 . and (prim1 x16 x0) (x9 = x6 x13 x16) ⟶ x15) ⟶ x15) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11)))) (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)) ⟶ (∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6) ⟶ ∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6) ⟶ prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12) = x3 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x8 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x9 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12))) ⟶ (∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6) ⟶ ∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6) ⟶ prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x9 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x9 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12) = x3 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) ⟶ (∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6) ⟶ ∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6) ⟶ prim1 (x6 (x3 (x4 (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0 ⟶ (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x8 = x6 x10 x13) ⟶ x12) ⟶ x12) ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0 ⟶ (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x9 = x6 x10 x13) ⟶ x12) ⟶ x12) ⟶ x11) ⟶ x11))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0 ⟶ x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0 ⟶ (∀ x15 : ο . (∀ x16 . and (prim1 x16 x0) (x8 = x6 x13 x16) ⟶ x15) ⟶ x15) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0 ⟶ x9 = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0 ⟶ (∀ x15 : ο . (∀ x16 . and (prim1 x16 x0) (x9 = x6 x13 x16) ⟶ x15) ⟶ x15) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11))))) (x3 (x4 (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0 ⟶ (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x8 = x6 x10 x13) ⟶ x12) ⟶ x12) ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0 ⟶ x9 = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0 ⟶ (∀ x15 : ο . (∀ x16 . and (prim1 x16 x0) (x9 = x6 x13 x16) ⟶ x15) ⟶ x15) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11))) (x4 (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0 ⟶ x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0 ⟶ (∀ x15 : ο . (∀ x16 . and (prim1 x16 x0) (x8 = x6 x13 x16) ⟶ x15) ⟶ x15) ⟶ x14) ⟶ x14)) x10 ⟶ x11) ⟶ x11)) (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0 ⟶ (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x9 = x6 x10 x13) ⟶ x12) ⟶ x12) ⟶ x11) ⟶ x11))))) (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)) ⟶ (∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6) ⟶ ∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6) ⟶ prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) x16 ⟶ x17) ⟶ x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0 ⟶ (∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x16 x19) ⟶ x18) ⟶ x18) ⟶ x17) ⟶ x17)))) = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12) = x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x8 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x9 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))))) ⟶ (∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6) ⟶ ∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6) ⟶ prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x9 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x9 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0 ⟶ (∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20) ⟶ x19) ⟶ x19) ⟶ x18) ⟶ x18)) x14 ⟶ x15) ⟶ x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x9 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x9 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0 ⟶ (∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25) ⟶ x24) ⟶ x24) ⟶ x23) ⟶ x23)) x19 ⟶ x20) ⟶ x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0 ⟶ (∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22) ⟶ x21) ⟶ x21) ⟶ x20) ⟶ x20)))) = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12) = x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x8 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ x8 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0 ⟶ (∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17) ⟶ x16) ⟶ x16) ⟶ x15) ⟶ x15)) x11 ⟶ x12) ⟶ x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0 ⟶ (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x9 = x6 x11 x14) ⟶ x13) ⟶ x13) ⟶ x12) ⟶ x12)))) ⟶ x7) ⟶ x7 |
|