Search for blocks/addresses/...

Proofgold Proposition

not (∀ x0 : (((((ι → ι) → ι)ι → ι → ι)ι → (ι → ι)ι → ι) → ι)ι → ο . ∀ x1 : ((ι → (ι → ι → ι)(ι → ι) → ι) → ι)(ι → ι → ι → ι → ι)(ι → (ι → ι)ι → ι) → ο . ∀ x2 : (ι → ι)(ι → ι)(ι → (ι → ι) → ι) → ο . ∀ x3 : (ι → (ι → (ι → ι)ι → ι)ι → ι)ι → ι → ι → (ι → ι)ι → ο . (∀ x4 x5 x6 x7 . x2 (λ x8 . setsum x5 0) (λ x8 . 0) (λ x8 . λ x9 : ι → ι . setsum 0 x8)x3 (λ x8 . λ x9 : ι → (ι → ι)ι → ι . λ x10 . x7) x5 (Inj0 0) (Inj1 (Inj0 (setsum (Inj1 0) (setsum 0 0)))) (λ x8 . 0) x7)(∀ x4 . ∀ x5 : (ι → ι → ι → ι)ι → ι → ι . ∀ x6 : (ι → ι) → ι . ∀ x7 : (((ι → ι)ι → ι) → ι)ι → ι → ι . x3 (λ x8 . λ x9 : ι → (ι → ι)ι → ι . λ x10 . setsum x8 (Inj0 0)) 0 (setsum 0 0) 0 (λ x8 . Inj1 (Inj0 (Inj0 (setsum 0 0)))) (setsum (setsum (x5 (λ x8 x9 x10 . x10) (setsum 0 0) 0) 0) (setsum (x5 (λ x8 x9 x10 . Inj0 0) 0 0) 0))In (x5 (λ x8 x9 x10 . Inj1 (Inj0 (setsum 0 0))) (Inj1 (x7 (λ x8 : (ι → ι)ι → ι . x6 (λ x9 . 0)) (setsum 0 0) (x7 (λ x8 : (ι → ι)ι → ι . 0) 0 0))) (x7 (λ x8 : (ι → ι)ι → ι . 0) (x5 (λ x8 x9 x10 . 0) 0 (Inj0 0)) (Inj1 x4))) (Inj1 (Inj0 (Inj0 x4))))(∀ x4 : ι → ι . ∀ x5 x6 . ∀ x7 : (ι → (ι → ι)ι → ι)((ι → ι) → ι)(ι → ι)ι → ι . x0 (λ x8 : (((ι → ι) → ι)ι → ι → ι)ι → (ι → ι)ι → ι . 0) (setsum (x7 (λ x8 . λ x9 : ι → ι . λ x10 . Inj1 0) (λ x8 : ι → ι . setsum (x8 0) 0) (setsum (setsum 0 0)) (setsum (x4 0) (Inj1 0))) (Inj1 (setsum (setsum 0 0) x5)))x2 (λ x8 . Inj1 0) (λ x8 . 0) (λ x8 . λ x9 : ι → ι . 0))(∀ x4 x5 . ∀ x6 x7 : ι → ι . x2 (λ x8 . 0) (λ x8 . 0) (λ x8 . λ x9 : ι → ι . x8)x2 (λ x8 . Inj0 (Inj0 (x6 (setsum 0 0)))) (λ x8 . 0) (λ x8 . λ x9 : ι → ι . 0))(∀ x4 : ι → (ι → ι → ι)ι → ι → ι . ∀ x5 . ∀ x6 x7 : ι → ((ι → ι)ι → ι) → ι . In (Inj0 (x4 (Inj1 (Inj1 0)) (λ x8 x9 . x6 0 (λ x10 : ι → ι . λ x11 . Inj1 0)) (setsum 0 (Inj1 0)) 0)) (x7 (setsum (x7 (setsum 0 0) (λ x8 : ι → ι . λ x9 . setsum 0 0)) (setsum (x4 0 (λ x8 x9 . 0) 0 0) (Inj0 0))) (λ x8 : ι → ι . λ x9 . setsum (Inj0 (Inj1 0)) 0))x0 (λ x8 : (((ι → ι) → ι)ι → ι → ι)ι → (ι → ι)ι → ι . x7 0 (λ x9 : ι → ι . λ x10 . Inj0 (Inj1 0))) (setsum (x7 (setsum (setsum 0 0) (x4 0 (λ x8 x9 . 0) 0 0)) (λ x8 : ι → ι . λ x9 . x6 0 (λ x10 : ι → ι . λ x11 . setsum 0 0))) x5)x1 (λ x8 : ι → (ι → ι → ι)(ι → ι) → ι . setsum (Inj1 (Inj1 0)) (Inj1 (Inj1 0))) (λ x8 x9 x10 x11 . 0) (λ x8 . λ x9 : ι → ι . λ x10 . setsum (setsum (Inj0 0) 0) (Inj1 (Inj1 x10))))(∀ x4 : (ι → ι → ι)((ι → ι)ι → ι) → ι . ∀ x5 x6 : ι → ι → ι . ∀ x7 : (ι → (ι → ι)ι → ι)((ι → ι)ι → ι)ι → ι → ι . x1 (λ x8 : ι → (ι → ι → ι)(ι → ι) → ι . x6 (Inj1 (setsum (Inj0 0) (x7 (λ x9 . λ x10 : ι → ι . λ x11 . 0) (λ x9 : ι → ι . λ x10 . 0) 0 0))) (setsum (Inj0 (setsum 0 0)) (setsum (Inj0 0) 0))) (λ x8 x9 x10 x11 . x8) (λ x8 . λ x9 : ι → ι . λ x10 . 0)x3 (λ x8 . λ x9 : ι → (ι → ι)ι → ι . Inj0) (Inj0 (x7 (λ x8 . λ x9 : ι → ι . λ x10 . setsum (Inj0 0) (Inj1 0)) (λ x8 : ι → ι . λ x9 . Inj1 0) 0 (Inj0 0))) (setsum (setsum (x6 (Inj0 0) (x4 (λ x8 x9 . 0) (λ x8 : ι → ι . λ x9 . 0))) 0) (x6 0 (Inj1 (Inj1 0)))) (Inj0 (Inj1 (setsum (x6 0 0) (Inj0 0)))) (λ x8 . x8) (setsum (setsum 0 (Inj0 (setsum 0 0))) (x7 (λ x8 . λ x9 : ι → ι . λ x10 . setsum 0 0) (λ x8 : ι → ι . λ x9 . Inj0 (Inj0 0)) (Inj1 (x4 (λ x8 x9 . 0) (λ x8 : ι → ι . λ x9 . 0))) (setsum (setsum 0 0) (x4 (λ x8 x9 . 0) (λ x8 : ι → ι . λ x9 . 0))))))(∀ x4 : ((ι → ι)ι → ι → ι) → ι . ∀ x5 . ∀ x6 : (ι → (ι → ι)ι → ι) → ι . ∀ x7 . In (setsum (setsum 0 (Inj0 (Inj0 0))) (x4 (λ x8 : ι → ι . λ x9 x10 . Inj0 (Inj0 0)))) (x4 (λ x8 : ι → ι . λ x9 x10 . 0))x3 (λ x8 . λ x9 : ι → (ι → ι)ι → ι . λ x10 . Inj0 (setsum x8 x7)) (Inj0 x7) (Inj0 (setsum x7 0)) (Inj0 (setsum (Inj1 0) (setsum x5 x7))) (λ x8 . x8) 0x0 (λ x8 : (((ι → ι) → ι)ι → ι → ι)ι → (ι → ι)ι → ι . x5) (setsum (Inj0 0) (Inj0 0)))(∀ x4 : ι → ι → ι . ∀ x5 : (((ι → ι)ι → ι)ι → ι → ι) → ι . ∀ x6 x7 . In (Inj0 (Inj1 (x5 (λ x8 : (ι → ι)ι → ι . λ x9 x10 . Inj1 0)))) (Inj1 (x4 (Inj1 0) (setsum (setsum 0 0) 0)))x0 (λ x8 : (((ι → ι) → ι)ι → ι → ι)ι → (ι → ι)ι → ι . 0) (Inj1 x7)x1 (λ x8 : ι → (ι → ι → ι)(ι → ι) → ι . setsum x7 0) (λ x8 x9 x10 x11 . setsum (Inj0 x9) x9) (λ x8 . λ x9 : ι → ι . λ x10 . Inj0 (setsum (x9 0) 0)))False)
type
prop
theory
HF
name
-
proof
PUYCz..
Megalodon
-
proofgold address
TMN8Z..
creator
11884 PrGVS../1b2ae..
owner
11884 PrGVS../1b2ae..
term root
f4df1..