Search for blocks/addresses/...

Proofgold Proposition

∀ x0 : ο . (wceq codz (cmpt (λ x1 . cn) (λ x1 . cmpt (λ x2 . crab (λ x3 . wceq (co (cv x3) (cv x1) cgcd) c1) (λ x3 . cz)) (λ x2 . cinf (crab (λ x3 . wbr (cv x1) (co (co (cv x2) (cv x3) cexp) c1 cmin) cdvds) (λ x3 . cn)) cr clt)))wceq cphi (cmpt (λ x1 . cn) (λ x1 . cfv (crab (λ x2 . wceq (co (cv x2) (cv x1) cgcd) c1) (λ x2 . co c1 (cv x1) cfz)) chash))wceq cpc (cmpt2 (λ x1 x2 . cprime) (λ x1 x2 . cq) (λ x1 x2 . cif (wceq (cv x2) cc0) cpnf (cio (λ x3 . wrex (λ x4 . wrex (λ x5 . wa (wceq (cv x2) (co (cv x4) (cv x5) cdiv)) (wceq (cv x3) (co (csup (crab (λ x6 . wbr (co (cv x1) (cv x6) cexp) (cv x4) cdvds) (λ x6 . cn0)) cr clt) (csup (crab (λ x6 . wbr (co (cv x1) (cv x6) cexp) (cv x5) cdvds) (λ x6 . cn0)) cr clt) cmin))) (λ x5 . cn)) (λ x4 . cz)))))wceq cgz (crab (λ x1 . wa (wcel (cfv (cv x1) cre) cz) (wcel (cfv (cv x1) cim) cz)) (λ x1 . cc))wceq cvdwa (cmpt (λ x1 . cn0) (λ x1 . cmpt2 (λ x2 x3 . cn) (λ x2 x3 . cn) (λ x2 x3 . crn (cmpt (λ x4 . co cc0 (co (cv x1) c1 cmin) cfz) (λ x4 . co (cv x2) (co (cv x4) (cv x3) cmul) caddc)))))wceq cvdwm (copab (λ x1 x2 . wex (λ x3 . wne (cin (crn (cfv (cv x1) cvdwa)) (cpw (cima (ccnv (cv x2)) (csn (cv x3))))) c0)))wceq cvdwp (coprab (λ x1 x2 x3 . wrex (λ x4 . wrex (λ x5 . wa (wral (λ x6 . wss (co (co (cv x4) (cfv (cv x6) (cv x5)) caddc) (cfv (cv x6) (cv x5)) (cfv (cv x2) cvdwa)) (cima (ccnv (cv x3)) (csn (cfv (co (cv x4) (cfv (cv x6) (cv x5)) caddc) (cv x3))))) (λ x6 . co c1 (cv x1) cfz)) (wceq (cfv (crn (cmpt (λ x6 . co c1 (cv x1) cfz) (λ x6 . cfv (co (cv x4) (cfv (cv x6) (cv x5)) caddc) (cv x3)))) chash) (cv x1))) (λ x5 . co cn (co c1 (cv x1) cfz) cmap)) (λ x4 . cn)))wceq cram (cmpt2 (λ x1 x2 . cn0) (λ x1 x2 . cvv) (λ x1 x2 . cinf (crab (λ x3 . ∀ x4 . wbr (cv x3) (cfv (cv x4) chash) clewral (λ x5 . wrex (λ x6 . wrex (λ x7 . wa (wbr (cfv (cv x6) (cv x2)) (cfv (cv x7) chash) cle) (wral (λ x8 . wceq (cfv (cv x8) chash) (cv x1)wceq (cfv (cv x8) (cv x5)) (cv x6)) (λ x8 . cpw (cv x7)))) (λ x7 . cpw (cv x4))) (λ x6 . cdm (cv x2))) (λ x5 . co (cdm (cv x2)) (crab (λ x6 . wceq (cfv (cv x6) chash) (cv x1)) (λ x6 . cpw (cv x4))) cmap)) (λ x3 . cn0)) cxr clt))wceq cprmo (cmpt (λ x1 . cn0) (λ x1 . cprod (λ x2 . co c1 (cv x1) cfz) (λ x2 . cif (wcel (cv x2) cprime) (cv x2) c1)))wceq cstr (copab (λ x1 x2 . w3a (wcel (cv x2) (cin cle (cxp cn cn))) (wfun (cdif (cv x1) (csn c0))) (wss (cdm (cv x1)) (cfv (cv x2) cfz))))wceq cnx (cres cid cn)(∀ x1 : ι → ο . wceq (cslot x1) (cmpt (λ x2 . cvv) (λ x2 . cfv x1 (cv x2))))wceq cbs (cslot c1)wceq csts (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cvv) (λ x1 x2 . cun (cres (cv x1) (cdif cvv (cdm (csn (cv x2))))) (csn (cv x2))))wceq cress (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cvv) (λ x1 x2 . cif (wss (cfv (cv x1) cbs) (cv x2)) (cv x1) (co (cv x1) (cop (cfv cnx cbs) (cin (cv x2) (cfv (cv x1) cbs))) csts)))wceq cplusg (cslot c2)wceq cmulr (cslot c3)wceq cstv (cslot c4)x0)x0
type
prop
theory
SetMM
name
df_odz__df_phi__df_pc__df_gz__df_vdwap__df_vdwmc__df_vdwpc__df_ram__df_prmo__df_struct__df_ndx__df_slot__df_base__df_sets__df_ress__df_plusg__df_mulr__df_starv
proof
PUV1k..
Megalodon
-
proofgold address
TMaQY..
creator
36224 PrCmT../a9ce4..
owner
36224 PrCmT../a9ce4..
term root
cd77f..