Search for blocks/addresses/...

Proofgold Proposition

∀ x0 : ο . (wceq cmd (copab (λ x1 x2 . wa (wa (wcel (cv x1) cch) (wcel (cv x2) cch)) (wral (λ x3 . wss (cv x3) (cv x2)wceq (cin (co (cv x3) (cv x1) chj) (cv x2)) (co (cv x3) (cin (cv x1) (cv x2)) chj)) (λ x3 . cch))))wceq cdmd (copab (λ x1 x2 . wa (wa (wcel (cv x1) cch) (wcel (cv x2) cch)) (wral (λ x3 . wss (cv x2) (cv x3)wceq (co (cin (cv x3) (cv x1)) (cv x2) chj) (cin (cv x3) (co (cv x1) (cv x2) chj))) (λ x3 . cch))))wceq cat (crab (λ x1 . wbr c0h (cv x1) ccv) (λ x1 . cch))(∀ x1 x2 : ι → ο . wceq (cdp2 x1 x2) (co x1 (co x2 (cdc c1 cc0) cdiv) caddc))wceq cdp (cmpt2 (λ x1 x2 . cn0) (λ x1 x2 . cr) (λ x1 x2 . cdp2 (cv x1) (cv x2)))wceq cxdiv (cmpt2 (λ x1 x2 . cxr) (λ x1 x2 . cdif cr (csn cc0)) (λ x1 x2 . crio (λ x3 . wceq (co (cv x2) (cv x3) cxmu) (cv x1)) (λ x3 . cxr)))wceq crefld (cfv cxrs csca)wceq cxmu (cfv cxrs cvsca)wceq comnd (crab (λ x1 . wsbc (λ x2 . wsbc (λ x3 . wsbc (λ x4 . wa (wcel (cv x1) ctos) (wral (λ x5 . wral (λ x6 . wral (λ x7 . wbr (cv x5) (cv x6) (cv x4)wbr (co (cv x5) (cv x7) (cv x3)) (co (cv x6) (cv x7) (cv x3)) (cv x4)) (λ x7 . cv x2)) (λ x6 . cv x2)) (λ x5 . cv x2))) (cfv (cv x1) cple)) (cfv (cv x1) cplusg)) (cfv (cv x1) cbs)) (λ x1 . cmnd))wceq cogrp (cin cgrp comnd)wceq csgns (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cv x1) cbs) (λ x2 . cif (wceq (cv x2) (cfv (cv x1) c0g)) cc0 (cif (wbr (cfv (cv x1) c0g) (cv x2) (cfv (cv x1) cplt)) c1 (cneg c1)))))wceq cinftm (cmpt (λ x1 . cvv) (λ x1 . copab (λ x2 x3 . wa (wa (wcel (cv x2) (cfv (cv x1) cbs)) (wcel (cv x3) (cfv (cv x1) cbs))) (wa (wbr (cfv (cv x1) c0g) (cv x2) (cfv (cv x1) cplt)) (wral (λ x4 . wbr (co (cv x4) (cv x2) (cfv (cv x1) cmg)) (cv x3) (cfv (cv x1) cplt)) (λ x4 . cn))))))wceq carchi (cab (λ x1 . wceq (cfv (cv x1) cinftm) c0))wceq cslmd (crab (λ x1 . wsbc (λ x2 . wsbc (λ x3 . wsbc (λ x4 . wsbc (λ x5 . wsbc (λ x6 . wsbc (λ x7 . wsbc (λ x8 . wa (wcel (cv x5) csrg) (wral (λ x9 . wral (λ x10 . wral (λ x11 . wral (λ x12 . wa (w3a (wcel (co (cv x10) (cv x12) (cv x4)) (cv x2)) (wceq (co (cv x10) (co (cv x12) (cv x11) (cv x3)) (cv x4)) (co (co (cv x10) (cv x12) (cv x4)) (co (cv x10) (cv x11) (cv x4)) (cv x3))) (wceq (co (co (cv x9) (cv x10) (cv x7)) (cv x12) (cv x4)) (co (co (cv x9) (cv x12) (cv x4)) (co (cv x10) (cv x12) (cv x4)) (cv x3)))) (w3a (wceq (co (co (cv x9) (cv x10) (cv x8)) (cv x12) (cv x4)) (co (cv x9) (co (cv x10) (cv x12) (cv x4)) (cv x4))) (wceq (co (cfv (cv x5) cur) (cv x12) (cv x4)) (cv x12)) (wceq (co (cfv (cv x5) c0g) (cv x12) (cv x4)) (cfv (cv x1) c0g)))) (λ x12 . cv x2)) (λ x11 . cv x2)) (λ x10 . cv x6)) (λ x9 . cv x6))) (cfv (cv x5) cmulr)) (cfv (cv x5) cplusg)) (cfv (cv x5) cbs)) (cfv (cv x1) csca)) (cfv (cv x1) cvsca)) (cfv (cv x1) cplusg)) (cfv (cv x1) cbs)) (λ x1 . ccmn))wceq corng (crab (λ x1 . wsbc (λ x2 . wsbc (λ x3 . wsbc (λ x4 . wsbc (λ x5 . wral (λ x6 . wral (λ x7 . wa (wbr (cv x3) (cv x6) (cv x5)) (wbr (cv x3) (cv x7) (cv x5))wbr (cv x3) (co (cv x6) (cv x7) (cv x4)) (cv x5)) (λ x7 . cv x2)) (λ x6 . cv x2)) (cfv (cv x1) cple)) (cfv (cv x1) cmulr)) (cfv (cv x1) c0g)) (cfv (cv x1) cbs)) (λ x1 . cin crg cogrp))wceq cofld (cin cfield corng)wceq cresv (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cvv) (λ x1 x2 . cif (wss (cfv (cfv (cv x1) csca) cbs) (cv x2)) (cv x1) (co (cv x1) (cop (cfv cnx csca) (co (cfv (cv x1) csca) (cv x2) cress)) csts)))wceq csmat (cmpt (λ x1 . cvv) (λ x1 . cmpt2 (λ x2 x3 . cn) (λ x2 x3 . cn) (λ x2 x3 . ccom (cv x1) (cmpt2 (λ x4 x5 . cn) (λ x4 x5 . cn) (λ x4 x5 . cop (cif (wbr (cv x4) (cv x2) clt) (cv x4) (co (cv x4) c1 caddc)) (cif (wbr (cv x5) (cv x3) clt) (cv x5) (co (cv x5) c1 caddc)))))))x0)x0
type
prop
theory
SetMM
name
df_md__df_dmd__df_at__df_dp2__df_dp__df_xdiv__ax_xrssca__ax_xrsvsca__df_omnd__df_ogrp__df_sgns__df_inftm__df_archi__df_slmd__df_orng__df_ofld__df_resv__df_smat
proof
PUV1k..
Megalodon
-
proofgold address
TMF57..
creator
36224 PrCmT../d833b..
owner
36224 PrCmT../d833b..
term root
29840..