∀ x0 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . (x0 u12 = λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x14) ⟶ (x0 u13 = λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x15) ⟶ (x0 u14 = λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x16) ⟶ (x0 u15 = λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x17) ⟶ (x0 u16 = λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x18) ⟶ ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ u17 ⟶ ∀ x3 . x3 ∈ u17 ⟶ (x2 = x3 ⟶ ∀ x4 : ο . x4) ⟶ (TwoRamseyGraph_3_6_Church17 (x0 x2) (x0 x3) = λ x5 x6 . x5) ⟶ x1 x2 x3) ⟶ (∀ x2 . x2 ⊆ u12 ⟶ atleastp u5 x2 ⟶ not (∀ x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ not (x1 x3 x4))) ⟶ (∀ x2 . x2 ⊆ u16 ⟶ atleastp u6 x2 ⟶ not (∀ x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ not (x1 x3 x4))) ⟶ ∀ x2 . x2 ⊆ u17 ⟶ atleastp u6 x2 ⟶ not (∀ x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ not (x1 x3 x4)) |
|