∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3 ⟶ x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 . x2 ⊆ x0 ⟶ x3 ⊆ x0 ⟶ x4 ⊆ x0 ⟶ x5 ⊆ x0 ⟶ (∀ x6 . x6 ∈ x2 ⟶ nIn x6 x5) ⟶ (∀ x6 . x6 ∈ x2 ⟶ nIn x6 x3) ⟶ (∀ x6 . x6 ∈ x4 ⟶ nIn x6 x2) ⟶ (∀ x6 . x6 ∈ x4 ⟶ nIn x6 x3) ⟶ (∀ x6 . x6 ∈ x4 ⟶ nIn x6 x5) ⟶ (∀ x6 . x6 ∈ x3 ⟶ nIn x6 x5) ⟶ ∀ x6 x7 x8 x9 x10 . x4 = SetAdjoin (SetAdjoin (UPair x6 x7) x8) x9 ⟶ x10 ∈ x5 ⟶ (∀ x11 . x11 ∈ x4 ⟶ (x11 = x10 ⟶ ∀ x12 : ο . x12) ⟶ not (x1 x11 x10) ⟶ atleastp (binintersect (DirGraphOutNeighbors x0 x1 x11) (DirGraphOutNeighbors x0 x1 x10)) u2) ⟶ x6 ∈ binintersect (DirGraphOutNeighbors x0 x1 x7) (DirGraphOutNeighbors x0 x1 x10) ⟶ x6 ∈ binintersect (DirGraphOutNeighbors x0 x1 x9) (DirGraphOutNeighbors x0 x1 x10) ⟶ not (x1 x7 x10) ⟶ not (x1 x9 x10) ⟶ ∀ x11 x12 : ι → ι . (∀ x13 . x13 ∈ x4 ⟶ x11 x13 ∈ x2) ⟶ (∀ x13 . x13 ∈ x4 ⟶ x11 x13 ∈ DirGraphOutNeighbors x0 x1 x13) ⟶ (∀ x13 . x13 ∈ x4 ⟶ x12 x13 ∈ x3) ⟶ (∀ x13 . x13 ∈ x4 ⟶ x12 x13 ∈ DirGraphOutNeighbors x0 x1 x13) ⟶ ∀ x13 . x13 ∈ x4 ⟶ x13 ∈ {x14 ∈ setminus x4 (Sing x6)|x1 (x11 x14) x10} ⟶ x13 ∈ {x14 ∈ setminus x4 (Sing x6)|x1 (x12 x14) x10} ⟶ x13 = x8 |
|