Search for blocks/addresses/...

Proofgold Proposition

∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . 62ee1.. x0 x1 x2 x3 x4 x5(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0x6 x7 x8 = x6 x9 x10and (x7 = x9) (x8 = x10))explicit_Field (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6) (x6 x1 x1) (x6 x2 x1) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10)))))))and (11fac.. (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6) (λ x7 . x6 (prim0 (λ x8 . and (prim1 x8 x0) (∃ x9 . and (prim1 x9 x0) (x7 = x6 x8 x9)))) x1) (λ x7 . x6 (prim0 (λ x8 . and (prim1 x8 x0) (x7 = x6 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x7 = x6 x10 x11)))) x8))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10)))))))) ((∀ x7 . prim1 x7 x0x6 x7 x1 = x7)and (and (and (and (and (Subq x0 (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6)) (∀ x7 . prim1 x7 x0prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10))) = x7)) (x6 x1 x1 = x1)) (x6 x2 x1 = x2)) (∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x6 (x3 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10)))) = x3 x7 x8)) (∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x6 (x3 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x7 = x6 x10 x11)))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x7 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11)))))) = x4 x7 x8))
type
prop
theory
HoTg
name
-
proof
PULBv..
Megalodon
-
proofgold address
TMTRU..
creator
3879 PrGxv../df55f..
owner
3879 PrGxv../df55f..
term root
c7fbc..