Search for blocks/addresses/...

Proofgold Proposition

∀ x0 : ο . (wceq czr (cmpt (λ x1 . cvv) (λ x1 . co (cv x1) (crn (cfv (cv x1) czrh)) citr))wceq cgf (cmpt2 (λ x1 x2 . cprime) (λ x1 x2 . cn) (λ x1 x2 . csb (cfv (cv x1) czn) (λ x3 . cfv (co (cv x3) (csn (csb (cfv (cv x3) cpl1) (λ x4 . csb (cfv (cv x3) cv1) (λ x5 . co (co (co (cv x1) (cv x2) cexp) (cv x5) (cfv (cfv (cv x4) cmgp) cmg)) (cv x5) (cfv (cv x4) csg))))) csf) c1st)))wceq cgfo (cmpt (λ x1 . cprime) (λ x1 . csb (cfv (cv x1) czn) (λ x2 . co (cv x2) (cmpt (λ x3 . cn) (λ x3 . csn (csb (cfv (cv x2) cpl1) (λ x4 . csb (cfv (cv x2) cv1) (λ x5 . co (co (co (cv x1) (cv x3) cexp) (cv x5) (cfv (cfv (cv x4) cmgp) cmg)) (cv x5) (cfv (cv x4) csg)))))) cpsl)))wceq ceqp (cmpt (λ x1 . cprime) (λ x1 . copab (λ x2 x3 . wa (wss (cpr (cv x2) (cv x3)) (co cz cz cmap)) (wral (λ x4 . wcel (csu (cfv (cneg (cv x4)) cuz) (λ x5 . co (co (cfv (cneg (cv x5)) (cv x2)) (cfv (cneg (cv x5)) (cv x3)) cmin) (co (cv x1) (co (cv x5) (co (cv x4) c1 caddc) caddc) cexp) cdiv)) cz) (λ x4 . cz)))))wceq crqp (cmpt (λ x1 . cprime) (λ x1 . cin ceqp (csb (crab (λ x2 . wrex (λ x3 . wss (cima (ccnv (cv x2)) (cdif cz (csn cc0))) (cv x3)) (λ x3 . crn cuz)) (λ x2 . co cz cz cmap)) (λ x2 . cxp (cv x2) (cin (cv x2) (co cz (co cc0 (co (cv x1) c1 cmin) cfz) cmap))))))wceq cqp (cmpt (λ x1 . cprime) (λ x1 . csb (crab (λ x2 . wrex (λ x3 . wss (cima (ccnv (cv x2)) (cdif cz (csn cc0))) (cv x3)) (λ x3 . crn cuz)) (λ x2 . co cz (co cc0 (co (cv x1) c1 cmin) cfz) cmap)) (λ x2 . co (cun (ctp (cop (cfv cnx cbs) (cv x2)) (cop (cfv cnx cplusg) (cmpt2 (λ x3 x4 . cv x2) (λ x3 x4 . cv x2) (λ x3 x4 . cfv (co (cv x3) (cv x4) (cof caddc)) (cfv (cv x1) crqp)))) (cop (cfv cnx cmulr) (cmpt2 (λ x3 x4 . cv x2) (λ x3 x4 . cv x2) (λ x3 x4 . cfv (cmpt (λ x5 . cz) (λ x5 . csu cz (λ x6 . co (cfv (cv x6) (cv x3)) (cfv (co (cv x5) (cv x6) cmin) (cv x4)) cmul))) (cfv (cv x1) crqp))))) (csn (cop (cfv cnx cple) (copab (λ x3 x4 . wa (wss (cpr (cv x3) (cv x4)) (cv x2)) (wbr (csu cz (λ x5 . co (cfv (cneg (cv x5)) (cv x3)) (co (co (cv x1) c1 caddc) (cneg (cv x5)) cexp) cmul)) (csu cz (λ x5 . co (cfv (cneg (cv x5)) (cv x4)) (co (co (cv x1) c1 caddc) (cneg (cv x5)) cexp) cmul)) clt)))))) (cmpt (λ x3 . cv x2) (λ x3 . cif (wceq (cv x3) (cxp cz (csn cc0))) cc0 (co (cv x1) (cneg (cinf (cima (ccnv (cv x3)) (cdif cz (csn cc0))) cr clt)) cexp))) ctng)))wceq cqpOLD (cmpt (λ x1 . cprime) (λ x1 . csb (crab (λ x2 . wrex (λ x3 . wss (cima (ccnv (cv x2)) (cdif cz (csn cc0))) (cv x3)) (λ x3 . crn cuz)) (λ x2 . co cz (co cc0 (co (cv x1) c1 cmin) cfz) cmap)) (λ x2 . co (cun (ctp (cop (cfv cnx cbs) (cv x2)) (cop (cfv cnx cplusg) (cmpt2 (λ x3 x4 . cv x2) (λ x3 x4 . cv x2) (λ x3 x4 . cfv (co (cv x3) (cv x4) (cof caddc)) (cfv (cv x1) crqp)))) (cop (cfv cnx cmulr) (cmpt2 (λ x3 x4 . cv x2) (λ x3 x4 . cv x2) (λ x3 x4 . cfv (cmpt (λ x5 . cz) (λ x5 . csu cz (λ x6 . co (cfv (cv x6) (cv x3)) (cfv (co (cv x5) (cv x6) cmin) (cv x4)) cmul))) (cfv (cv x1) crqp))))) (csn (cop (cfv cnx cple) (copab (λ x3 x4 . wa (wss (cpr (cv x3) (cv x4)) (cv x2)) (wbr (csu cz (λ x5 . co (cfv (cneg (cv x5)) (cv x3)) (co (co (cv x1) c1 caddc) (cneg (cv x5)) cexp) cmul)) (csu cz (λ x5 . co (cfv (cneg (cv x5)) (cv x4)) (co (co (cv x1) c1 caddc) (cneg (cv x5)) cexp) cmul)) clt)))))) (cmpt (λ x3 . cv x2) (λ x3 . cif (wceq (cv x3) (cxp cz (csn cc0))) cc0 (co (cv x1) (cneg (csup (cima (ccnv (cv x3)) (cdif cz (csn cc0))) cr (ccnv clt))) cexp))) ctng)))wceq czp (ccom czr cqp)wceq cqpa (cmpt (λ x1 . cprime) (λ x1 . csb (cfv (cv x1) cqp) (λ x2 . co (cv x2) (cmpt (λ x3 . cn) (λ x3 . crab (λ x4 . wa (wbr (co (cv x2) (cv x4) cdg1) (cv x3) cle) (wral (λ x5 . wss (cima (ccnv (cv x5)) (cdif cz (csn cc0))) (co cc0 (cv x3) cfz)) (λ x5 . crn (cfv (cv x4) cco1)))) (λ x4 . cfv (cv x2) cpl1))) cpsl)))wceq ccp (ccom ccpms cqpa)(∀ x1 x2 x3 : ι → ο . wceq (ctrpred x1 x2 x3) (cuni (crn (cres (crdg (cmpt (λ x4 . cvv) (λ x4 . ciun (λ x5 . cv x4) (λ x5 . cpred x1 x2 (cv x5)))) (cpred x1 x2 x3)) com))))(∀ x1 x2 x3 : ι → ο . wceq (cwsuc x1 x2 x3) (cinf (cpred x1 (ccnv x2) x3) x1 x2))(∀ x1 x2 : ι → ο . wceq (cwlim x1 x2) (crab (λ x3 . wa (wne (cv x3) (cinf x1 x1 x2)) (wceq (cv x3) (csup (cpred x1 x2 (cv x3)) x1 x2))) (λ x3 . x1)))(∀ x1 x2 x3 : ι → ο . wceq (cfrecs x1 x2 x3) (cuni (cab (λ x4 . wex (λ x5 . w3a (wfn (cv x4) (cv x5)) (wa (wss (cv x5) x1) (wral (λ x6 . wss (cpred x1 x2 (cv x6)) (cv x5)) (λ x6 . cv x5))) (wral (λ x6 . wceq (cfv (cv x6) (cv x4)) (co (cv x6) (cres (cv x4) (cpred x1 x2 (cv x6))) x3)) (λ x6 . cv x5)))))))wceq csur (cab (λ x1 . wrex (λ x2 . wf (cv x2) (cpr c1o c2o) (cv x1)) (λ x2 . con0)))wceq cslt (copab (λ x1 x2 . wa (wa (wcel (cv x1) csur) (wcel (cv x2) csur)) (wrex (λ x3 . wa (wral (λ x4 . wceq (cfv (cv x4) (cv x1)) (cfv (cv x4) (cv x2))) (λ x4 . cv x3)) (wbr (cfv (cv x3) (cv x1)) (cfv (cv x3) (cv x2)) (ctp (cop c1o c0) (cop c1o c2o) (cop c0 c2o)))) (λ x3 . con0))))wceq cbday (cmpt (λ x1 . csur) (λ x1 . cdm (cv x1)))wceq csle (cdif (cxp csur csur) (ccnv cslt))x0)x0
type
prop
theory
SetMM
name
df_zrng__df_gf__df_gfoo__df_eqp__df_rqp__df_qp__df_qpOLD__df_zp__df_qpa__df_cp__df_trpred__df_wsuc__df_wlim__df_frecs__df_no__df_slt__df_bday__df_sle
proof
PUV1k..
Megalodon
-
proofgold address
TMTy1..
creator
36224 PrCmT../aa133..
owner
36224 PrCmT../aa133..
term root
fdeb2..