Search for blocks/addresses/...

Proofgold Proposition

∀ x0 : ο . (wceq cbigo (cmpt (λ x1 . co cr cr cpm) (λ x1 . crab (λ x2 . wrex (λ x3 . wrex (λ x4 . wral (λ x5 . wbr (cfv (cv x5) (cv x2)) (co (cv x4) (cfv (cv x5) (cv x1)) cmul) cle) (λ x5 . cin (cdm (cv x2)) (co (cv x3) cpnf cico))) (λ x4 . cr)) (λ x3 . cr)) (λ x2 . co cr cr cpm)))wceq cblen (cmpt (λ x1 . cvv) (λ x1 . cif (wceq (cv x1) cc0) c1 (co (cfv (co c2 (cfv (cv x1) cabs) clogb) cfl) c1 caddc)))wceq cdig (cmpt (λ x1 . cn) (λ x1 . cmpt2 (λ x2 x3 . cz) (λ x2 x3 . co cc0 cpnf cico) (λ x2 x3 . co (cfv (co (co (cv x1) (cneg (cv x2)) cexp) (cv x3) cmul) cfl) (cv x1) cmo)))(∀ x1 : ι → ο . wceq (csetrecs x1) (cuni (cab (λ x2 . ∀ x3 . (∀ x4 . wss (cv x4) (cv x2)wss (cv x4) (cv x3)wss (cfv (cv x4) x1) (cv x3))wss (cv x2) (cv x3)))))wceq cpg (csetrecs (cmpt (λ x1 . cvv) (λ x1 . cxp (cpw (cv x1)) (cpw (cv x1)))))wceq cge_real (ccnv cle)wceq cgt (ccnv clt)wceq csinh (cmpt (λ x1 . cc) (λ x1 . co (cfv (co ci (cv x1) cmul) csin) ci cdiv))wceq ccosh (cmpt (λ x1 . cc) (λ x1 . cfv (co ci (cv x1) cmul) ccos))wceq ctanh (cmpt (λ x1 . cima (ccnv ccosh) (cdif cc (csn cc0))) (λ x1 . co (cfv (co ci (cv x1) cmul) ctan) ci cdiv))wceq csec (cmpt (λ x1 . crab (λ x2 . wne (cfv (cv x2) ccos) cc0) (λ x2 . cc)) (λ x1 . co c1 (cfv (cv x1) ccos) cdiv))wceq ccsc (cmpt (λ x1 . crab (λ x2 . wne (cfv (cv x2) csin) cc0) (λ x2 . cc)) (λ x1 . co c1 (cfv (cv x1) csin) cdiv))wceq ccot (cmpt (λ x1 . crab (λ x2 . wne (cfv (cv x2) csin) cc0) (λ x2 . cc)) (λ x1 . co (cfv (cv x1) ccos) (cfv (cv x1) csin) cdiv))wceq clog_ (cmpt (λ x1 . cdif cc (cpr cc0 c1)) (λ x1 . cmpt (λ x2 . cdif cc (csn cc0)) (λ x2 . co (cfv (cv x2) clog) (cfv (cv x1) clog) cdiv)))(∀ x1 x2 : ι → ο . wb (wreflexive x1 x2) (wa (wss x2 (cxp x1 x1)) (wral (λ x3 . wbr (cv x3) (cv x3) x2) (λ x3 . x1))))(∀ x1 x2 : ι → ο . wb (wirreflexive x1 x2) (wa (wss x2 (cxp x1 x1)) (wral (λ x3 . wn (wbr (cv x3) (cv x3) x2)) (λ x3 . x1))))(∀ x1 x2 : ι → ο . wb (walsi x1 x2) (wa (∀ x3 . x1 x3x2 x3) (wex x1)))(∀ x1 : ι → ο . ∀ x2 : ι → ι → ο . wb (walsc x1 x2) (wa (wral x1 x2) (wex (λ x3 . wcel (cv x3) (x2 x3)))))x0)x0
type
prop
theory
SetMM
name
df_bigo__df_blen__df_dig__df_setrecs__df_pg__df_gte__df_gt__df_sinh__df_cosh__df_tanh__df_sec__df_csc__df_cot__df_logbALT__df_reflexive__df_irreflexive__df_alsi__df_alsc
proof
PUV1k..
Megalodon
-
proofgold address
TMJW4..
creator
36224 PrCmT../f7ebc..
owner
36224 PrCmT../f7ebc..
term root
0a153..