Search for blocks/addresses/...

Proofgold Proposition

∀ x0 : ο . (wceq ccart (cdif (cxp (cxp cvv cvv) cvv) (crn (csymdif (ctxp cvv cep) (ctxp (cpprod cep cep) cvv))))wceq cimg (ccom (cimage (cres (ccom c2nd c1st) (cres c1st (cxp cvv cvv)))) ccart)wceq cdomain (cimage (cres c1st (cxp cvv cvv)))wceq crange (cimage (cres c2nd (cxp cvv cvv)))wceq ccup (cdif (cxp (cxp cvv cvv) cvv) (crn (csymdif (ctxp cvv cep) (ctxp (cun (ccom (ccnv c1st) cep) (ccom (ccnv c2nd) cep)) cvv))))wceq ccap (cdif (cxp (cxp cvv cvv) cvv) (crn (csymdif (ctxp cvv cep) (ctxp (cin (ccom (ccnv c1st) cep) (ccom (ccnv c2nd) cep)) cvv))))wceq crestrict (ccom ccap (ctxp c1st (ccom ccart (ctxp c2nd (ccom crange c1st)))))wceq csuccf (ccom ccup (ctxp cid csingle))wceq capply (ccom (ccom cbigcup cbigcup) (ccom (cdif (cxp cvv cvv) (crn (csymdif (ctxp cvv cep) (ctxp (cres cep csingles) cvv)))) (ccom (ccom csingle cimg) (cpprod cid csingle))))(∀ x1 : ι → ο . wceq (cfunpart x1) (cres x1 (cdm (cin (ccom (cimage x1) csingle) (cxp cvv csingles)))))(∀ x1 : ι → ο . wceq (cfullfn x1) (cun (cfunpart x1) (cxp (cdif cvv (cdm (cfunpart x1))) (csn c0))))(∀ x1 : ι → ο . wceq (cub x1) (cdif (cxp cvv cvv) (ccom (cdif cvv x1) (ccnv cep))))(∀ x1 : ι → ο . wceq (clb x1) (cub (ccnv x1)))(∀ x1 x2 : ι → ο . wceq (caltop x1 x2) (cpr (csn x1) (cpr x1 (csn x2))))(∀ x1 x2 : ι → ο . wceq (caltxp x1 x2) (cab (λ x3 . wrex (λ x4 . wrex (λ x5 . wceq (cv x3) (caltop (cv x4) (cv x5))) (λ x5 . x2)) (λ x4 . x1))))wceq cofs (copab (λ x1 x2 . wrex (λ x3 . wrex (λ x4 . wrex (λ x5 . wrex (λ x6 . wrex (λ x7 . wrex (λ x8 . wrex (λ x9 . wrex (λ x10 . wrex (λ x11 . w3a (wceq (cv x1) (cop (cop (cv x4) (cv x5)) (cop (cv x6) (cv x7)))) (wceq (cv x2) (cop (cop (cv x8) (cv x9)) (cop (cv x10) (cv x11)))) (w3a (wa (wbr (cv x5) (cop (cv x4) (cv x6)) cbtwn) (wbr (cv x9) (cop (cv x8) (cv x10)) cbtwn)) (wa (wbr (cop (cv x4) (cv x5)) (cop (cv x8) (cv x9)) ccgr) (wbr (cop (cv x5) (cv x6)) (cop (cv x9) (cv x10)) ccgr)) (wa (wbr (cop (cv x4) (cv x7)) (cop (cv x8) (cv x11)) ccgr) (wbr (cop (cv x5) (cv x7)) (cop (cv x9) (cv x11)) ccgr)))) (λ x11 . cfv (cv x3) cee)) (λ x10 . cfv (cv x3) cee)) (λ x9 . cfv (cv x3) cee)) (λ x8 . cfv (cv x3) cee)) (λ x7 . cfv (cv x3) cee)) (λ x6 . cfv (cv x3) cee)) (λ x5 . cfv (cv x3) cee)) (λ x4 . cfv (cv x3) cee)) (λ x3 . cn)))wceq ctransport (coprab (λ x1 x2 x3 . wrex (λ x4 . wa (w3a (wcel (cv x1) (cxp (cfv (cv x4) cee) (cfv (cv x4) cee))) (wcel (cv x2) (cxp (cfv (cv x4) cee) (cfv (cv x4) cee))) (wne (cfv (cv x2) c1st) (cfv (cv x2) c2nd))) (wceq (cv x3) (crio (λ x5 . wa (wbr (cfv (cv x2) c2nd) (cop (cfv (cv x2) c1st) (cv x5)) cbtwn) (wbr (cop (cfv (cv x2) c2nd) (cv x5)) (cv x1) ccgr)) (λ x5 . cfv (cv x4) cee)))) (λ x4 . cn)))wceq ccolin (ccnv (coprab (λ x1 x2 x3 . wrex (λ x4 . wa (w3a (wcel (cv x3) (cfv (cv x4) cee)) (wcel (cv x1) (cfv (cv x4) cee)) (wcel (cv x2) (cfv (cv x4) cee))) (w3o (wbr (cv x3) (cop (cv x1) (cv x2)) cbtwn) (wbr (cv x1) (cop (cv x2) (cv x3)) cbtwn) (wbr (cv x2) (cop (cv x3) (cv x1)) cbtwn))) (λ x4 . cn))))x0)x0
type
prop
theory
SetMM
name
df_cart__df_img__df_domain__df_range__df_cup__df_cap__df_restrict__df_succf__df_apply__df_funpart__df_fullfun__df_ub__df_lb__df_altop__df_altxp__df_ofs__df_transport__df_colinear
proof
PUV1k..
Megalodon
-
proofgold address
TMbGT..
creator
36224 PrCmT../9d206..
owner
36224 PrCmT../9d206..
term root
99904..