Search for blocks/addresses/...

Proofgold Proposition

∀ x0 : ο . ((∀ x1 x2 x3 : ι → ο . wceq (cstrset x1 x2 x3) (cun (cres x3 (cdif cvv (csn (cfv cnx x1)))) (csn (cop (cfv cnx x1) x2))))wceq cdiag2 (cmpt (λ x1 . cvv) (λ x1 . cin cid (cxp (cv x1) (cv x1))))wceq cinftyexpi (cmpt (λ x1 . co (cneg cpi) cpi cioc) (λ x1 . cop (cv x1) cc))wceq cccinfty (crn cinftyexpi)wceq cccbar (cun cc cccinfty)wceq cpinfty (cfv cc0 cinftyexpi)wceq cminfty (cfv cpi cinftyexpi)wceq crrbar (cun cr (cpr cminfty cpinfty))wceq cinfty (cpw (cuni cc))wceq ccchat (cun cc (csn cinfty))wceq crrhat (cun cr (csn cinfty))wceq caddcc (cmpt (λ x1 . cun (cun (cxp cc cccbar) (cxp cccbar cc)) (cun (cxp ccchat ccchat) (cfv cccinfty cdiag2))) (λ x1 . cif (wo (wceq (cfv (cv x1) c1st) cinfty) (wceq (cfv (cv x1) c2nd) cinfty)) cinfty (cif (wcel (cfv (cv x1) c1st) cc) (cif (wcel (cfv (cv x1) c2nd) cc) (co (cfv (cv x1) c1st) (cfv (cv x1) c2nd) caddc) (cfv (cv x1) c2nd)) (cfv (cv x1) c1st))))wceq coppcc (cmpt (λ x1 . cun cccbar ccchat) (λ x1 . cif (wceq (cv x1) cinfty) cinfty (cif (wcel (cv x1) cc) (cneg (cv x1)) (cfv (cif (wbr cc0 (cfv (cv x1) c1st) clt) (co (cfv (cv x1) c1st) cpi cmin) (co (cfv (cv x1) c1st) cpi caddc)) cinftyexpi))))wceq cprcpal (cmpt (λ x1 . cr) (λ x1 . co (co (cv x1) (co c2 cpi cmul) cmo) (cif (wbr (co (cv x1) (co c2 cpi cmul) cmo) cpi cle) cc0 (co c2 cpi cmul)) cmin))wceq carg (cmpt (λ x1 . cdif cccbar (csn cc0)) (λ x1 . cif (wcel (cv x1) cc) (cfv (cfv (cv x1) clog) cim) (cfv (cv x1) c1st)))wceq cmulc (cmpt (λ x1 . cun (cxp cccbar cccbar) (cxp ccchat ccchat)) (λ x1 . cif (wo (wceq (cfv (cv x1) c1st) cc0) (wceq (cfv (cv x1) c2nd) cc0)) cc0 (cif (wo (wceq (cfv (cv x1) c1st) cinfty) (wceq (cfv (cv x1) c2nd) cinfty)) cinfty (cif (wcel (cv x1) (cxp cc cc)) (co (cfv (cv x1) c1st) (cfv (cv x1) c2nd) cmul) (cfv (cfv (co (cfv (cfv (cv x1) c1st) carg) (cfv (cfv (cv x1) c2nd) carg) caddc) cprcpal) cinftyexpi)))))wceq cinvc (cmpt (λ x1 . cun cccbar ccchat) (λ x1 . cif (wceq (cv x1) cc0) cinfty (cif (wcel (cv x1) cc) (co c1 (cv x1) cdiv) cc0)))wceq cfinsum (cmpt (λ x1 . copab (λ x2 x3 . wa (wcel (cv x2) ccmn) (wrex (λ x4 . wf (cv x4) (cfv (cv x2) cbs) (cv x3)) (λ x4 . cfn)))) (λ x1 . cio (λ x2 . wrex (λ x3 . wex (λ x4 . wa (wf1o (co c1 (cv x3) cfz) (cdm (cfv (cv x1) c2nd)) (cv x4)) (wceq (cv x2) (cfv (cv x3) (cseq (cfv (cfv (cv x1) c1st) cplusg) (cmpt (λ x5 . cn) (λ x5 . cfv (cfv (cv x5) (cv x4)) (cfv (cv x1) c2nd))) c1))))) (λ x3 . cn0))))x0)x0
type
prop
theory
SetMM
name
df_strset__df_bj_diag__df_bj_inftyexpi__df_bj_ccinfty__df_bj_ccbar__df_bj_pinfty__df_bj_minfty__df_bj_rrbar__df_bj_infty__df_bj_cchat__df_bj_rrhat__df_bj_addc__df_bj_oppc__df_bj_prcpal__df_bj_arg__df_bj_mulc__df_bj_invc__df_bj_finsum
proof
PUV1k..
Megalodon
-
proofgold address
TMSKS..
creator
36224 PrCmT../5c8e8..
owner
36224 PrCmT../5c8e8..
term root
90174..