Search for blocks/addresses/...

Proofgold Proposition

∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . 62ee1.. x0 x1 x2 x3 x4 x5(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0x6 x7 x8 = x6 x9 x10and (x7 = x9) (x8 = x10))∀ x7 : ο . ((∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0prim1 (x6 x8 x9) (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6))(∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)∀ x9 : ι → ο . (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x8 = x6 x10 x11x9 (x6 x10 x11))x9 x8)(∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x6 x8 x9 = x6 x11 x12))) = x8)(∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0prim0 (λ x11 . and (prim1 x11 x0) (x6 x8 x9 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 x8 x9 = x6 x13 x14)))) x11)) = x9)(∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim1 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10)))) x0)(∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim1 (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9))) x0)(∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)x8 = x6 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10))))(∀ x8 . prim1 x8 x0prim1 (x6 x8 x1) (1216a.. (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6) (λ x9 . x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x9 = x6 x11 x12)))) x1 = x9)))(∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12))) = prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x9 = x6 x11 x12)))prim0 (λ x11 . and (prim1 x11 x0) (x8 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) x11)) = prim0 (λ x11 . and (prim1 x11 x0) (x9 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14)))) x11))x8 = x9)prim1 (x6 x1 x1) (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)prim1 (x6 x2 x1) (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)(∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x6 (x3 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 x8 x9 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 x10 x11 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (prim1 x13 x0) (x6 x8 x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x6 x8 x9 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x6 x10 x11 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x6 x10 x11 = x6 x15 x16)))) x13)))) = x6 (x3 x8 x10) (x3 x9 x11))(∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)x6 (x3 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x9 = x6 x11 x12))))) (x3 (prim0 (λ x11 . and (prim1 x11 x0) (x8 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (x9 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14)))) x11)))) = x6 (x3 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x9 = x6 x11 x12))))) (x3 (prim0 (λ x11 . and (prim1 x11 x0) (x8 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (x9 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14)))) x11)))))(∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)prim1 (x6 (x3 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x9 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (x9 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x9 = x6 x12 x13)))) x10))))) (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6))(∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x6 (x3 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16))))) (x3 (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))) x15)))) = x6 x11 x12))) = x3 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x9 = x6 x11 x12)))))(∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))) x13)))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 (x3 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18))))) (x3 (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x9 = x6 x19 x20)))) x17)))) = x6 x13 x14)))) x11)) = x3 (prim0 (λ x11 . and (prim1 x11 x0) (x8 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (x9 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14)))) x11))))(∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x6 (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 x8 x9 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 x10 x11 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x6 x8 x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x6 x8 x9 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x6 x10 x11 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x6 x10 x11 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 x8 x9 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (x6 x10 x11 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x6 x10 x11 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x6 x8 x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x6 x8 x9 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 x10 x11 = x6 x13 x14)))))) = x6 (x3 (x4 x8 x10) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 x9 x11))) (x3 (x4 x8 x11) (x4 x9 x10)))(∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)x6 (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x9 = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x8 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (x9 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (x9 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x8 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x9 = x6 x11 x12)))))) = x6 (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x9 = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x8 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (x9 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14)))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (x9 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x8 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x9 = x6 x11 x12)))))))(∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)prim1 (x3 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x9 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (x9 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x9 = x6 x12 x13)))) x10)))))) x0)(∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)prim1 (x3 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (prim1 x10 x0) (x9 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x9 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x9 = x6 x10 x11)))))) x0)(∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)prim1 (x6 (x3 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x9 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (x9 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x9 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (prim1 x10 x0) (x9 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x9 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x9 = x6 x10 x11))))))) (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6))(∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x6 (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) (prim0 (λ x15 . and (prim1 x15 x0) (x9 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))) x15)))) (x4 (prim0 (λ x15 . and (prim1 x15 x0) (x8 = x6 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) x15))) (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))))) = x6 x11 x12))) = x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x9 = x6 x11 x12))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x8 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (x9 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14)))) x11))))))(∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)prim0 (λ x11 . and (prim1 x11 x0) (x6 (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (x9 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x9 = x6 x15 x16)))) x13)))) (x4 (prim0 (λ x13 . and (prim1 x13 x0) (x8 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x8 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14)))))) = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x9 = x6 x19 x20)))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x8 = x6 x17 x18)))) (prim0 (λ x17 . and (prim1 x17 x0) (x9 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x9 = x6 x19 x20)))) x17)))) (x4 (prim0 (λ x17 . and (prim1 x17 x0) (x8 = x6 (prim0 (λ x19 . and (prim1 x19 x0) (∃ x20 . and (prim1 x20 x0) (x8 = x6 x19 x20)))) x17))) (prim0 (λ x17 . and (prim1 x17 x0) (∃ x18 . and (prim1 x18 x0) (x9 = x6 x17 x18)))))) = x6 x13 x14)))) x11)) = x3 (x4 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) (prim0 (λ x11 . and (prim1 x11 x0) (x9 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x9 = x6 x13 x14)))) x11)))) (x4 (prim0 (λ x11 . and (prim1 x11 x0) (x8 = x6 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x8 = x6 x13 x14)))) x11))) (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x9 = x6 x11 x12))))))x7)x7
type
prop
theory
HoTg
name
-
proof
PUhAZ..
Megalodon
-
proofgold address
TMPDe..
creator
3859 PrGxv../cd410..
owner
3859 PrGxv../cd410..
term root
4c7c5..