Search for blocks/addresses/...

Proofgold Proposition

∀ x0 : ο . (wceq cvrgp (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cv x1) (λ x2 . cec (cs1 (cop (cv x2) c0)) (cfv (cv x1) cefg))))wceq ccmn (crab (λ x1 . wral (λ x2 . wral (λ x3 . wceq (co (cv x2) (cv x3) (cfv (cv x1) cplusg)) (co (cv x3) (cv x2) (cfv (cv x1) cplusg))) (λ x3 . cfv (cv x1) cbs)) (λ x2 . cfv (cv x1) cbs)) (λ x1 . cmnd))wceq cabl (cin cgrp ccmn)wceq ccyg (crab (λ x1 . wrex (λ x2 . wceq (crn (cmpt (λ x3 . cz) (λ x3 . co (cv x3) (cv x2) (cfv (cv x1) cmg)))) (cfv (cv x1) cbs)) (λ x2 . cfv (cv x1) cbs)) (λ x1 . cgrp))wceq cdprd (cmpt2 (λ x1 x2 . cgrp) (λ x1 x2 . cab (λ x3 . wa (wf (cdm (cv x3)) (cfv (cv x1) csubg) (cv x3)) (wral (λ x4 . wa (wral (λ x5 . wss (cfv (cv x4) (cv x3)) (cfv (cfv (cv x5) (cv x3)) (cfv (cv x1) ccntz))) (λ x5 . cdif (cdm (cv x3)) (csn (cv x4)))) (wceq (cin (cfv (cv x4) (cv x3)) (cfv (cuni (cima (cv x3) (cdif (cdm (cv x3)) (csn (cv x4))))) (cfv (cfv (cv x1) csubg) cmrc))) (csn (cfv (cv x1) c0g)))) (λ x4 . cdm (cv x3))))) (λ x1 x2 . crn (cmpt (λ x3 . crab (λ x4 . wbr (cv x4) (cfv (cv x1) c0g) cfsupp) (λ x4 . cixp (λ x5 . cdm (cv x2)) (λ x5 . cfv (cv x5) (cv x2)))) (λ x3 . co (cv x1) (cv x3) cgsu))))wceq cdpj (cmpt2 (λ x1 x2 . cgrp) (λ x1 x2 . cima (cdm cdprd) (csn (cv x1))) (λ x1 x2 . cmpt (λ x3 . cdm (cv x2)) (λ x3 . co (cfv (cv x3) (cv x2)) (co (cv x1) (cres (cv x2) (cdif (cdm (cv x2)) (csn (cv x3)))) cdprd) (cfv (cv x1) cpj1))))wceq cmgp (cmpt (λ x1 . cvv) (λ x1 . co (cv x1) (cop (cfv cnx cplusg) (cfv (cv x1) cmulr)) csts))wceq cur (ccom c0g cmgp)wceq csrg (crab (λ x1 . wa (wcel (cfv (cv x1) cmgp) cmnd) (wsbc (λ x2 . wsbc (λ x3 . wsbc (λ x4 . wsbc (λ x5 . wral (λ x6 . wa (wral (λ x7 . wral (λ x8 . wa (wceq (co (cv x6) (co (cv x7) (cv x8) (cv x3)) (cv x4)) (co (co (cv x6) (cv x7) (cv x4)) (co (cv x6) (cv x8) (cv x4)) (cv x3))) (wceq (co (co (cv x6) (cv x7) (cv x3)) (cv x8) (cv x4)) (co (co (cv x6) (cv x8) (cv x4)) (co (cv x7) (cv x8) (cv x4)) (cv x3)))) (λ x8 . cv x2)) (λ x7 . cv x2)) (wa (wceq (co (cv x5) (cv x6) (cv x4)) (cv x5)) (wceq (co (cv x6) (cv x5) (cv x4)) (cv x5)))) (λ x6 . cv x2)) (cfv (cv x1) c0g)) (cfv (cv x1) cmulr)) (cfv (cv x1) cplusg)) (cfv (cv x1) cbs))) (λ x1 . ccmn))wceq crg (crab (λ x1 . wa (wcel (cfv (cv x1) cmgp) cmnd) (wsbc (λ x2 . wsbc (λ x3 . wsbc (λ x4 . wral (λ x5 . wral (λ x6 . wral (λ x7 . wa (wceq (co (cv x5) (co (cv x6) (cv x7) (cv x3)) (cv x4)) (co (co (cv x5) (cv x6) (cv x4)) (co (cv x5) (cv x7) (cv x4)) (cv x3))) (wceq (co (co (cv x5) (cv x6) (cv x3)) (cv x7) (cv x4)) (co (co (cv x5) (cv x7) (cv x4)) (co (cv x6) (cv x7) (cv x4)) (cv x3)))) (λ x7 . cv x2)) (λ x6 . cv x2)) (λ x5 . cv x2)) (cfv (cv x1) cmulr)) (cfv (cv x1) cplusg)) (cfv (cv x1) cbs))) (λ x1 . cgrp))wceq ccrg (crab (λ x1 . wcel (cfv (cv x1) cmgp) ccmn) (λ x1 . crg))wceq coppr (cmpt (λ x1 . cvv) (λ x1 . co (cv x1) (cop (cfv cnx cmulr) (ctpos (cfv (cv x1) cmulr))) csts))wceq cdsr (cmpt (λ x1 . cvv) (λ x1 . copab (λ x2 x3 . wa (wcel (cv x2) (cfv (cv x1) cbs)) (wrex (λ x4 . wceq (co (cv x4) (cv x2) (cfv (cv x1) cmulr)) (cv x3)) (λ x4 . cfv (cv x1) cbs)))))wceq cui (cmpt (λ x1 . cvv) (λ x1 . cima (ccnv (cin (cfv (cv x1) cdsr) (cfv (cfv (cv x1) coppr) cdsr))) (csn (cfv (cv x1) cur))))wceq cir (cmpt (λ x1 . cvv) (λ x1 . csb (cdif (cfv (cv x1) cbs) (cfv (cv x1) cui)) (λ x2 . crab (λ x3 . wral (λ x4 . wral (λ x5 . wne (co (cv x4) (cv x5) (cfv (cv x1) cmulr)) (cv x3)) (λ x5 . cv x2)) (λ x4 . cv x2)) (λ x3 . cv x2))))wceq cinvr (cmpt (λ x1 . cvv) (λ x1 . cfv (co (cfv (cv x1) cmgp) (cfv (cv x1) cui) cress) cminusg))wceq cdvr (cmpt (λ x1 . cvv) (λ x1 . cmpt2 (λ x2 x3 . cfv (cv x1) cbs) (λ x2 x3 . cfv (cv x1) cui) (λ x2 x3 . co (cv x2) (cfv (cv x3) (cfv (cv x1) cinvr)) (cfv (cv x1) cmulr))))wceq crpm (cmpt (λ x1 . cvv) (λ x1 . csb (cfv (cv x1) cbs) (λ x2 . crab (λ x3 . wral (λ x4 . wral (λ x5 . wsbc (λ x6 . wbr (cv x3) (co (cv x4) (cv x5) (cfv (cv x1) cmulr)) (cv x6)wo (wbr (cv x3) (cv x4) (cv x6)) (wbr (cv x3) (cv x5) (cv x6))) (cfv (cv x1) cdsr)) (λ x5 . cv x2)) (λ x4 . cv x2)) (λ x3 . cdif (cv x2) (cun (cfv (cv x1) cui) (csn (cfv (cv x1) c0g)))))))x0)x0
type
prop
theory
SetMM
name
df_vrgp__df_cmn__df_abl__df_cyg__df_dprd__df_dpj__df_mgp__df_ur__df_srg__df_ring__df_cring__df_oppr__df_dvdsr__df_unit__df_irred__df_invr__df_dvr__df_rprm
proof
PUV1k..
Megalodon
-
proofgold address
TMJQk..
creator
36224 PrCmT../dda2d..
owner
36224 PrCmT../dda2d..
term root
b1bdc..