∀ x0 : (((ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι) → ι) → (((ι → ι → ι) → ι → ι) → ι) → ι . ∀ x1 : (((((ι → ι) → ι) → ι → ι → ι) → ι) → (((ι → ι) → ι) → ι) → (ι → ι) → ι → ι → ι) → (ι → ((ι → ι) → ι → ι) → ι → ι) → ι . ∀ x2 : (ι → ι) → (((ι → ι → ι) → (ι → ι) → ι → ι) → ((ι → ι) → ι) → ι) → ι . ∀ x3 : (ι → (ι → ι) → ι → ι → ι) → ((((ι → ι) → ι) → (ι → ι) → ι → ι) → ι → ι) → ι . (∀ x4 : (((ι → ι) → ι → ι) → ι → ι) → ι → ι . ∀ x5 : ((ι → ι) → ι) → ι . ∀ x6 x7 . x3 (λ x9 . λ x10 : ι → ι . λ x11 x12 . x3 (λ x13 . λ x14 : ι → ι . λ x15 x16 . 0) (λ x13 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x14 . 0)) (λ x9 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x10 . x10) = Inj1 (Inj0 (x4 (λ x9 : (ι → ι) → ι → ι . λ x10 . x10) (x1 (λ x9 : (((ι → ι) → ι) → ι → ι → ι) → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 : ι → ι . λ x12 x13 . x2 (λ x14 . 0) (λ x14 : (ι → ι → ι) → (ι → ι) → ι → ι . λ x15 : (ι → ι) → ι . 0)) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . setsum 0 0))))) ⟶ (∀ x4 . ∀ x5 : ((ι → ι → ι) → ι) → ι . ∀ x6 . ∀ x7 : ι → ι → ι . x3 (λ x9 . λ x10 : ι → ι . λ x11 x12 . setsum (setsum x11 0) 0) (λ x9 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x10 . 0) = x5 (λ x9 : ι → ι → ι . 0)) ⟶ (∀ x4 x5 x6 x7 . x2 (λ x9 . x0 (λ x10 : (ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . Inj1 (setsum (Inj0 0) (Inj1 0))) (λ x10 : (ι → ι → ι) → ι → ι . Inj1 0)) (λ x9 : (ι → ι → ι) → (ι → ι) → ι → ι . λ x10 : (ι → ι) → ι . x1 (λ x11 : (((ι → ι) → ι) → ι → ι → ι) → ι . λ x12 : ((ι → ι) → ι) → ι . λ x13 : ι → ι . λ x14 x15 . Inj1 (setsum (x13 0) 0)) (λ x11 . λ x12 : (ι → ι) → ι → ι . λ x13 . x10 (λ x14 . 0))) = x1 (λ x9 : (((ι → ι) → ι) → ι → ι → ι) → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 : ι → ι . λ x12 x13 . Inj0 0) (λ x9 . λ x10 : (ι → ι) → ι → ι . Inj1)) ⟶ (∀ x4 : (ι → ι → ι) → ι . ∀ x5 : ι → ι → ι → ι → ι . ∀ x6 . ∀ x7 : ι → ι → ι . x2 (λ x9 . x1 (λ x10 : (((ι → ι) → ι) → ι → ι → ι) → ι . λ x11 : ((ι → ι) → ι) → ι . λ x12 : ι → ι . λ x13 x14 . x12 (x3 (λ x15 . λ x16 : ι → ι . λ x17 x18 . 0) (λ x15 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x16 . setsum 0 0))) (λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 . x12)) (λ x9 : (ι → ι → ι) → (ι → ι) → ι → ι . λ x10 : (ι → ι) → ι . x0 (λ x11 : (ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . x2 (λ x12 . x12) (λ x12 : (ι → ι → ι) → (ι → ι) → ι → ι . λ x13 : (ι → ι) → ι . 0)) (λ x11 : (ι → ι → ι) → ι → ι . x11 (λ x12 x13 . 0) (x9 (λ x12 x13 . 0) (λ x12 . 0) (x11 (λ x12 x13 . 0) 0)))) = x0 (λ x9 : (ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . setsum 0 (x7 0 (x2 (λ x10 . x9 (λ x11 . 0) (λ x11 : ι → ι . 0) (λ x11 . 0)) (λ x10 : (ι → ι → ι) → (ι → ι) → ι → ι . λ x11 : (ι → ι) → ι . 0)))) (λ x9 : (ι → ι → ι) → ι → ι . x7 (x7 (Inj0 (Inj0 0)) (x2 (λ x10 . x7 0 0) (λ x10 : (ι → ι → ι) → (ι → ι) → ι → ι . λ x11 : (ι → ι) → ι . setsum 0 0))) (Inj0 (Inj1 (x1 (λ x10 : (((ι → ι) → ι) → ι → ι → ι) → ι . λ x11 : ((ι → ι) → ι) → ι . λ x12 : ι → ι . λ x13 x14 . 0) (λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 . 0)))))) ⟶ (∀ x4 x5 . ∀ x6 : ι → ι . ∀ x7 : ι → (ι → ι) → ι . x1 (λ x9 : (((ι → ι) → ι) → ι → ι → ι) → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 : ι → ι . λ x12 x13 . 0) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . 0) = Inj0 (x6 0)) ⟶ (∀ x4 x5 x6 x7 . x1 (λ x9 : (((ι → ι) → ι) → ι → ι → ι) → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 : ι → ι . λ x12 x13 . 0) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . x3 (λ x12 . λ x13 : ι → ι . λ x14 x15 . x15) (λ x12 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x13 . Inj1 (x0 (λ x14 : (ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . setsum 0 0) (λ x14 : (ι → ι → ι) → ι → ι . 0)))) = setsum (x1 (λ x9 : (((ι → ι) → ι) → ι → ι → ι) → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 : ι → ι . λ x12 x13 . x11 (Inj0 (x10 (λ x14 : ι → ι . 0)))) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . 0)) (x1 (λ x9 : (((ι → ι) → ι) → ι → ι → ι) → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 : ι → ι . λ x12 x13 . x1 (λ x14 : (((ι → ι) → ι) → ι → ι → ι) → ι . λ x15 : ((ι → ι) → ι) → ι . λ x16 : ι → ι . λ x17 x18 . setsum (x2 (λ x19 . 0) (λ x19 : (ι → ι → ι) → (ι → ι) → ι → ι . λ x20 : (ι → ι) → ι . 0)) (x1 (λ x19 : (((ι → ι) → ι) → ι → ι → ι) → ι . λ x20 : ((ι → ι) → ι) → ι . λ x21 : ι → ι . λ x22 x23 . 0) (λ x19 . λ x20 : (ι → ι) → ι → ι . λ x21 . 0))) (λ x14 . λ x15 : (ι → ι) → ι → ι . λ x16 . x13)) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . x0 (λ x12 : (ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . Inj0 x9) (λ x12 : (ι → ι → ι) → ι → ι . 0)))) ⟶ (∀ x4 x5 x6 x7 . x0 (λ x9 : (ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . x1 (λ x10 : (((ι → ι) → ι) → ι → ι → ι) → ι . λ x11 : ((ι → ι) → ι) → ι . λ x12 : ι → ι . λ x13 x14 . x12 (x2 (λ x15 . 0) (λ x15 : (ι → ι → ι) → (ι → ι) → ι → ι . λ x16 : (ι → ι) → ι . 0))) (λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 . 0)) (λ x9 : (ι → ι → ι) → ι → ι . setsum (Inj0 (Inj1 x7)) (setsum (setsum (x9 (λ x10 x11 . 0) 0) (setsum 0 0)) 0)) = x1 (λ x9 : (((ι → ι) → ι) → ι → ι → ι) → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 : ι → ι . λ x12 x13 . setsum (x10 (λ x14 : ι → ι . x14 (Inj1 0))) (x1 (λ x14 : (((ι → ι) → ι) → ι → ι → ι) → ι . λ x15 : ((ι → ι) → ι) → ι . λ x16 : ι → ι . λ x17 x18 . x1 (λ x19 : (((ι → ι) → ι) → ι → ι → ι) → ι . λ x20 : ((ι → ι) → ι) → ι . λ x21 : ι → ι . λ x22 x23 . x23) (λ x19 . λ x20 : (ι → ι) → ι → ι . λ x21 . Inj0 0)) (λ x14 . λ x15 : (ι → ι) → ι → ι . λ x16 . Inj0 (Inj1 0)))) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 . Inj1 0)) ⟶ (∀ x4 : ι → ι . ∀ x5 x6 x7 . x0 (λ x9 : (ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . x3 (λ x10 . λ x11 : ι → ι . λ x12 x13 . x1 (λ x14 : (((ι → ι) → ι) → ι → ι → ι) → ι . λ x15 : ((ι → ι) → ι) → ι . λ x16 : ι → ι . λ x17 x18 . 0) (λ x14 . λ x15 : (ι → ι) → ι → ι . λ x16 . x1 (λ x17 : (((ι → ι) → ι) → ι → ι → ι) → ι . λ x18 : ((ι → ι) → ι) → ι . λ x19 : ι → ι . λ x20 x21 . x21) (λ x17 . λ x18 : (ι → ι) → ι → ι . λ x19 . x16))) (λ x10 : ((ι → ι) → ι) → (ι → ι) → ι → ι . λ x11 . x11)) (λ x9 : (ι → ι → ι) → ι → ι . x0 (λ x10 : (ι → ι) → ((ι → ι) → ι) → (ι → ι) → ι . x7) (λ x10 : (ι → ι → ι) → ι → ι . 0)) = Inj1 (x4 (setsum 0 0))) ⟶ False |
|