Search for blocks/addresses/...

Proofgold Proposition

∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5(∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0x6 x7 x8 = x6 x9 x10and (x7 = x9) (x8 = x10))∀ x7 : ο . ((∀ x8 . x8x0∀ x9 . x9x0x6 x8 x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 : ι → ο . (∀ x10 . x10x0∀ x11 . x11x0x8 = x6 x10 x11x9 (x6 x10 x11))x9 x8)(∀ x8 . x8x0∀ x9 . x9x0prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 x8 x9 = x6 x11 x13)x12)x12)) = x8)(∀ x8 . x8x0∀ x9 . x9x0prim0 (λ x11 . and (x11x0) (x6 x8 x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 x8 x9 = x6 x13 x15)x14)x14))) x11)) = x9)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x9 . and (x9x0) (∀ x10 : ο . (∀ x11 . and (x11x0) (x8 = x6 x9 x11)x10)x10))x0)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6prim0 (λ x9 . and (x9x0) (x8 = x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) x9))x0)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6x8 = x6 (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x10 x12)x11)x11))) (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))) x10))))(∀ x8 . x8x0x6 x8 x1{x9 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6|x6 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12))) x1 = x9})(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12)) = prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12))prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) x11)) = prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11))x8 = x9)x6 x1 x1ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6x6 x2 x1ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6(∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0x6 (x3 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 x8 x9 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 x10 x11 = x6 x13 x15)x14)x14)))) (x3 (prim0 (λ x13 . and (x13x0) (x6 x8 x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x6 x8 x9 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x6 x10 x11 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x6 x10 x11 = x6 x15 x17)x16)x16))) x13)))) = x6 (x3 x8 x10) (x3 x9 x11))(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12)))) (x3 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11)))) = x6 (x3 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12)))) (x3 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11)))))(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x10 x12)x11)x11))) (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x9 = x6 x10 x12)x11)x11)))) (x3 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))) x10))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x9 = x6 x12 x14)x13)x13))) x10))))ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16)))) (x3 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))) = x6 x11 x13)x12)x12)) = x3 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12))))(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6prim0 (λ x11 . and (x11x0) (x6 (x3 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14)))) (x3 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18)))) (x3 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))) = x6 x13 x15)x14)x14))) x11)) = x3 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11))))(∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 x8 x9 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 x10 x11 = x6 x13 x15)x14)x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x6 x8 x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x6 x8 x9 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x6 x10 x11 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x6 x10 x11 = x6 x15 x17)x16)x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 x8 x9 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (x6 x10 x11 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x6 x10 x11 = x6 x15 x17)x16)x16))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x6 x8 x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x6 x8 x9 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 x10 x11 = x6 x13 x15)x14)x14))))) = x6 (x3 (x4 x8 x10) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 x9 x11))) (x3 (x4 x8 x11) (x4 x9 x10)))(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12))))) = x6 (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12))))))(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x3 (x4 (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x10 x12)x11)x11))) (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x9 = x6 x10 x12)x11)x11)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))) x10))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x9 = x6 x12 x14)x13)x13))) x10)))))x0)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x3 (x4 (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x10 x12)x11)x11))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x9 = x6 x12 x14)x13)x13))) x10)))) (x4 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))) x10))) (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x9 = x6 x10 x12)x11)x11))))x0)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6x6 (x3 (x4 (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x10 x12)x11)x11))) (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x9 = x6 x10 x12)x11)x11)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))) x10))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x9 = x6 x12 x14)x13)x13))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x8 = x6 x10 x12)x11)x11))) (prim0 (λ x10 . and (x10x0) (x9 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x9 = x6 x12 x14)x13)x13))) x10)))) (x4 (prim0 (λ x10 . and (x10x0) (x8 = x6 (prim0 (λ x12 . and (x12x0) (∀ x13 : ο . (∀ x14 . and (x14x0) (x8 = x6 x12 x14)x13)x13))) x10))) (prim0 (λ x10 . and (x10x0) (∀ x11 : ο . (∀ x12 . and (x12x0) (x9 = x6 x10 x12)x11)x11)))))ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6)(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) (prim0 (λ x15 . and (x15x0) (x9 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))) x15)))) (x4 (prim0 (λ x15 . and (x15x0) (x8 = x6 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) x15))) (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))))) = x6 x11 x13)x12)x12)) = x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11))))))(∀ x8 . x8ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6∀ x9 . x9ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6prim0 (λ x11 . and (x11x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) (prim0 (λ x13 . and (x13x0) (x9 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x9 = x6 x15 x17)x16)x16))) x13)))) (x4 (prim0 (λ x13 . and (x13x0) (x8 = x6 (prim0 (λ x15 . and (x15x0) (∀ x16 : ο . (∀ x17 . and (x17x0) (x8 = x6 x15 x17)x16)x16))) x13))) (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))))) = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x8 = x6 x17 x19)x18)x18))) (prim0 (λ x17 . and (x17x0) (x9 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x9 = x6 x19 x21)x20)x20))) x17)))) (x4 (prim0 (λ x17 . and (x17x0) (x8 = x6 (prim0 (λ x19 . and (x19x0) (∀ x20 : ο . (∀ x21 . and (x21x0) (x8 = x6 x19 x21)x20)x20))) x17))) (prim0 (λ x17 . and (x17x0) (∀ x18 : ο . (∀ x19 . and (x19x0) (x9 = x6 x17 x19)x18)x18))))) = x6 x13 x15)x14)x14))) x11)) = x3 (x4 (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x8 = x6 x11 x13)x12)x12))) (prim0 (λ x11 . and (x11x0) (x9 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x9 = x6 x13 x15)x14)x14))) x11)))) (x4 (prim0 (λ x11 . and (x11x0) (x8 = x6 (prim0 (λ x13 . and (x13x0) (∀ x14 : ο . (∀ x15 . and (x15x0) (x8 = x6 x13 x15)x14)x14))) x11))) (prim0 (λ x11 . and (x11x0) (∀ x12 : ο . (∀ x13 . and (x13x0) (x9 = x6 x11 x13)x12)x12)))))x7)x7
type
prop
theory
HotG
name
-
proof
PUhdh..
Megalodon
-
proofgold address
TMZjA..
creator
4958 Pr6Pc../ab9be..
owner
4958 Pr6Pc../ab9be..
term root
0adfd..