Search for blocks/addresses/...

Proofgold Proposition

∀ x0 x1 x2 : ι → ι → ι → ι . ∀ x3 x4 x5 : ι → ι → ι → ο . (∀ x6 x7 x8 . x3 x6 x7 x8x0 x6 x7 x8 = add_SNo x6 (mul_SNo 2 x8))(∀ x6 x7 x8 . x3 x6 x7 x8x1 x6 x7 x8 = x8)(∀ x6 x7 x8 . x3 x6 x7 x8x2 x6 x7 x8 = add_SNo x7 (minus_SNo (add_SNo x6 x8)))(∀ x6 x7 x8 . x4 x6 x7 x8x0 x6 x7 x8 = add_SNo (mul_SNo 2 x7) (minus_SNo x6))(∀ x6 x7 x8 . x4 x6 x7 x8x1 x6 x7 x8 = x7)(∀ x6 x7 x8 . x4 x6 x7 x8x2 x6 x7 x8 = add_SNo x6 (add_SNo x8 (minus_SNo x7)))(∀ x6 x7 x8 . x5 x6 x7 x8x0 x6 x7 x8 = add_SNo x6 (minus_SNo (mul_SNo 2 x7)))(∀ x6 x7 x8 . x5 x6 x7 x8x1 x6 x7 x8 = add_SNo x6 (add_SNo x8 (minus_SNo x7)))(∀ x6 x7 x8 . x5 x6 x7 x8x2 x6 x7 x8 = x7)(∀ x6 x7 x8 . add_SNo x6 x8x7x3 x6 x7 x8)(∀ x6 x7 x8 . x3 x6 x7 x8add_SNo x6 x8x7)(∀ x6 x7 x8 . x7add_SNo x6 x8x6mul_SNo 2 x7x4 x6 x7 x8)(∀ x6 x7 x8 . x4 x6 x7 x8x7add_SNo x6 x8)(∀ x6 x7 x8 . x4 x6 x7 x8x6mul_SNo 2 x7)(∀ x6 x7 x8 . x7add_SNo x6 x8mul_SNo 2 x7x6x5 x6 x7 x8)(∀ x6 x7 x8 . x5 x6 x7 x8x7add_SNo x6 x8)(∀ x6 x7 x8 . x5 x6 x7 x8mul_SNo 2 x7x6)∀ x6 . x6omega∀ x7 . equip x7 x6(∀ x8 . x8x7lam 3 (λ x10 . If_i (x10 = 0) (ap x8 0) (If_i (x10 = 1) (ap x8 1) (ap x8 2))) = x8)(∀ x8 x9 x10 . lam 3 (λ x11 . If_i (x11 = 0) x8 (If_i (x11 = 1) x9 x10))x7∀ x11 : ο . (x8omegax9omegax10omegaSNoLt 0 x8SNoLt 0 x9SNoLt 0 x10(add_SNo x8 x10 = x9∀ x12 : ο . x12)(x8 = mul_SNo 2 x9∀ x12 : ο . x12)lam 3 (λ x12 . If_i (x12 = 0) x8 (If_i (x12 = 1) x10 x9))x7x11)x11)(∀ x8 x9 x10 x11 . x11omega∀ x12 . x12omega∀ x13 . x13omegalam 3 (λ x14 . If_i (x14 = 0) x8 (If_i (x14 = 1) x9 x10))x7add_SNo (mul_SNo x11 x11) (mul_SNo 4 (mul_SNo x12 x13)) = add_SNo (mul_SNo x8 x8) (mul_SNo 4 (mul_SNo x9 x10))lam 3 (λ x14 . If_i (x14 = 0) x11 (If_i (x14 = 1) x12 x13))x7)∀ x8 x9 x10 . lam 3 (λ x11 . If_i (x11 = 0) x8 (If_i (x11 = 1) x9 x10))x7x0 x8 x9 x10 = x8x1 x8 x9 x10 = x9x2 x8 x9 x10 = x10(∀ x11 x12 x13 . lam 3 (λ x14 . If_i (x14 = 0) x11 (If_i (x14 = 1) x12 x13))x7x0 x11 x12 x13 = x11x1 x11 x12 x13 = x12x2 x11 x12 x13 = x13and (and (x11 = x8) (x12 = x9)) (x13 = x10))∀ x11 : ο . (∀ x12 . (∀ x13 : ο . (∀ x14 . lam 3 (λ x15 . If_i (x15 = 0) x12 (If_i (x15 = 1) x14 x14))x7x13)x13)x11)x11
type
prop
theory
HotG
name
-
proof
PUQwZ..
Megalodon
-
proofgold address
TMHLd..
creator
30793 Pr5Zc../f84c7..
owner
30793 Pr5Zc../f84c7..
term root
14ba4..