Search for blocks/addresses/...

Proofgold Proposition

∀ x0 : ο . (wceq crh (cmpt2 (λ x1 x2 . crg) (λ x1 x2 . crg) (λ x1 x2 . csb (cfv (cv x1) cbs) (λ x3 . csb (cfv (cv x2) cbs) (λ x4 . crab (λ x5 . wa (wceq (cfv (cfv (cv x1) cur) (cv x5)) (cfv (cv x2) cur)) (wral (λ x6 . wral (λ x7 . wa (wceq (cfv (co (cv x6) (cv x7) (cfv (cv x1) cplusg)) (cv x5)) (co (cfv (cv x6) (cv x5)) (cfv (cv x7) (cv x5)) (cfv (cv x2) cplusg))) (wceq (cfv (co (cv x6) (cv x7) (cfv (cv x1) cmulr)) (cv x5)) (co (cfv (cv x6) (cv x5)) (cfv (cv x7) (cv x5)) (cfv (cv x2) cmulr)))) (λ x7 . cv x3)) (λ x6 . cv x3))) (λ x5 . co (cv x4) (cv x3) cmap)))))wceq crs (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cvv) (λ x1 x2 . crab (λ x3 . wcel (ccnv (cv x3)) (co (cv x2) (cv x1) crh)) (λ x3 . co (cv x1) (cv x2) crh)))wceq cric (cima (ccnv crs) (cdif cvv c1o))wceq cdr (crab (λ x1 . wceq (cfv (cv x1) cui) (cdif (cfv (cv x1) cbs) (csn (cfv (cv x1) c0g)))) (λ x1 . crg))wceq cfield (cin cdr ccrg)wceq csubrg (cmpt (λ x1 . crg) (λ x1 . crab (λ x2 . wa (wcel (co (cv x1) (cv x2) cress) crg) (wcel (cfv (cv x1) cur) (cv x2))) (λ x2 . cpw (cfv (cv x1) cbs))))wceq crgspn (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cpw (cfv (cv x1) cbs)) (λ x2 . cint (crab (λ x3 . wss (cv x2) (cv x3)) (λ x3 . cfv (cv x1) csubrg)))))wceq cabv (cmpt (λ x1 . crg) (λ x1 . crab (λ x2 . wral (λ x3 . wa (wb (wceq (cfv (cv x3) (cv x2)) cc0) (wceq (cv x3) (cfv (cv x1) c0g))) (wral (λ x4 . wa (wceq (cfv (co (cv x3) (cv x4) (cfv (cv x1) cmulr)) (cv x2)) (co (cfv (cv x3) (cv x2)) (cfv (cv x4) (cv x2)) cmul)) (wbr (cfv (co (cv x3) (cv x4) (cfv (cv x1) cplusg)) (cv x2)) (co (cfv (cv x3) (cv x2)) (cfv (cv x4) (cv x2)) caddc) cle)) (λ x4 . cfv (cv x1) cbs))) (λ x3 . cfv (cv x1) cbs)) (λ x2 . co (co cc0 cpnf cico) (cfv (cv x1) cbs) cmap)))wceq cstf (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cv x1) cbs) (λ x2 . cfv (cv x2) (cfv (cv x1) cstv))))wceq csr (cab (λ x1 . wsbc (λ x2 . wa (wcel (cv x2) (co (cv x1) (cfv (cv x1) coppr) crh)) (wceq (cv x2) (ccnv (cv x2)))) (cfv (cv x1) cstf)))wceq clmod (crab (λ x1 . wsbc (λ x2 . wsbc (λ x3 . wsbc (λ x4 . wsbc (λ x5 . wsbc (λ x6 . wsbc (λ x7 . wsbc (λ x8 . wa (wcel (cv x4) crg) (wral (λ x9 . wral (λ x10 . wral (λ x11 . wral (λ x12 . wa (w3a (wcel (co (cv x10) (cv x12) (cv x5)) (cv x2)) (wceq (co (cv x10) (co (cv x12) (cv x11) (cv x3)) (cv x5)) (co (co (cv x10) (cv x12) (cv x5)) (co (cv x10) (cv x11) (cv x5)) (cv x3))) (wceq (co (co (cv x9) (cv x10) (cv x7)) (cv x12) (cv x5)) (co (co (cv x9) (cv x12) (cv x5)) (co (cv x10) (cv x12) (cv x5)) (cv x3)))) (wa (wceq (co (co (cv x9) (cv x10) (cv x8)) (cv x12) (cv x5)) (co (cv x9) (co (cv x10) (cv x12) (cv x5)) (cv x5))) (wceq (co (cfv (cv x4) cur) (cv x12) (cv x5)) (cv x12)))) (λ x12 . cv x2)) (λ x11 . cv x2)) (λ x10 . cv x6)) (λ x9 . cv x6))) (cfv (cv x4) cmulr)) (cfv (cv x4) cplusg)) (cfv (cv x4) cbs)) (cfv (cv x1) cvsca)) (cfv (cv x1) csca)) (cfv (cv x1) cplusg)) (cfv (cv x1) cbs)) (λ x1 . cgrp))wceq cscaf (cmpt (λ x1 . cvv) (λ x1 . cmpt2 (λ x2 x3 . cfv (cfv (cv x1) csca) cbs) (λ x2 x3 . cfv (cv x1) cbs) (λ x2 x3 . co (cv x2) (cv x3) (cfv (cv x1) cvsca))))wceq clss (cmpt (λ x1 . cvv) (λ x1 . crab (λ x2 . wral (λ x3 . wral (λ x4 . wral (λ x5 . wcel (co (co (cv x3) (cv x4) (cfv (cv x1) cvsca)) (cv x5) (cfv (cv x1) cplusg)) (cv x2)) (λ x5 . cv x2)) (λ x4 . cv x2)) (λ x3 . cfv (cfv (cv x1) csca) cbs)) (λ x2 . cdif (cpw (cfv (cv x1) cbs)) (csn c0))))wceq clspn (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cpw (cfv (cv x1) cbs)) (λ x2 . cint (crab (λ x3 . wss (cv x2) (cv x3)) (λ x3 . cfv (cv x1) clss)))))wceq clmhm (cmpt2 (λ x1 x2 . clmod) (λ x1 x2 . clmod) (λ x1 x2 . crab (λ x3 . wsbc (λ x4 . wa (wceq (cfv (cv x2) csca) (cv x4)) (wral (λ x5 . wral (λ x6 . wceq (cfv (co (cv x5) (cv x6) (cfv (cv x1) cvsca)) (cv x3)) (co (cv x5) (cfv (cv x6) (cv x3)) (cfv (cv x2) cvsca))) (λ x6 . cfv (cv x1) cbs)) (λ x5 . cfv (cv x4) cbs))) (cfv (cv x1) csca)) (λ x3 . co (cv x1) (cv x2) cghm)))wceq clmim (cmpt2 (λ x1 x2 . clmod) (λ x1 x2 . clmod) (λ x1 x2 . crab (λ x3 . wf1o (cfv (cv x1) cbs) (cfv (cv x2) cbs) (cv x3)) (λ x3 . co (cv x1) (cv x2) clmhm)))wceq clmic (cima (ccnv clmim) (cdif cvv c1o))wceq clbs (cmpt (λ x1 . cvv) (λ x1 . crab (λ x2 . wsbc (λ x3 . wsbc (λ x4 . wa (wceq (cfv (cv x2) (cv x3)) (cfv (cv x1) cbs)) (wral (λ x5 . wral (λ x6 . wn (wcel (co (cv x6) (cv x5) (cfv (cv x1) cvsca)) (cfv (cdif (cv x2) (csn (cv x5))) (cv x3)))) (λ x6 . cdif (cfv (cv x4) cbs) (csn (cfv (cv x4) c0g)))) (λ x5 . cv x2))) (cfv (cv x1) csca)) (cfv (cv x1) clspn)) (λ x2 . cpw (cfv (cv x1) cbs))))x0)x0
type
prop
theory
SetMM
name
df_rnghom__df_rngiso__df_ric__df_drng__df_field__df_subrg__df_rgspn__df_abv__df_staf__df_srng__df_lmod__df_scaf__df_lss__df_lsp__df_lmhm__df_lmim__df_lmic__df_lbs
proof
PUV1k..
Megalodon
-
proofgold address
TMFQw..
creator
36224 PrCmT../09976..
owner
36224 PrCmT../09976..
term root
c0925..