∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2 ⟶ x0 x2 x1) ⟶ not (or (∀ x1 : ο . (∀ x2 . and (x2 ⊆ u9) (and (equip u3 x2) (∀ x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ x0 x3 x4)) ⟶ x1) ⟶ x1) (∀ x1 : ο . (∀ x2 . and (x2 ⊆ u9) (and (equip u4 x2) (∀ x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ not (x0 x3 x4))) ⟶ x1) ⟶ x1)) ⟶ ∀ x1 . x1 ∈ u9 ⟶ ∀ x2 : ο . (∀ x3 . x3 ∈ u9 ⟶ ∀ x4 . x4 ∈ u9 ⟶ ∀ x5 . x5 ∈ u9 ⟶ ∀ x6 . x6 ∈ u9 ⟶ (x1 = x3 ⟶ ∀ x7 : ο . x7) ⟶ (x1 = x4 ⟶ ∀ x7 : ο . x7) ⟶ (x1 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x1 = x6 ⟶ ∀ x7 : ο . x7) ⟶ (x3 = x4 ⟶ ∀ x7 : ο . x7) ⟶ (x3 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x3 = x6 ⟶ ∀ x7 : ο . x7) ⟶ (x4 = x5 ⟶ ∀ x7 : ο . x7) ⟶ (x4 = x6 ⟶ ∀ x7 : ο . x7) ⟶ (x5 = x6 ⟶ ∀ x7 : ο . x7) ⟶ x0 x1 x3 ⟶ x0 x1 x4 ⟶ x0 x1 x5 ⟶ not (x0 x3 x4) ⟶ not (x0 x3 x5) ⟶ not (x0 x4 x5) ⟶ (∀ x7 . x7 ∈ u9 ⟶ x0 x1 x7 ⟶ x7 ∈ SetAdjoin (SetAdjoin (UPair x1 x3) x4) x5) ⟶ x0 x6 x3 ⟶ x0 x6 x4 ⟶ x2) ⟶ x2 |
|