∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ∈ x0) ⟶ explicit_Group x0 x1 ⟶ ∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . x4 ∈ x2 ⟶ ∀ x5 . x5 ∈ x2 ⟶ x3 x4 x5 ∈ x2) ⟶ explicit_Group x2 x3 ⟶ ∀ x4 x5 . MagmaHom (pack_b x0 x1) (pack_b x2 x3) x4 ⟶ MagmaHom (pack_b x0 x1) (pack_b x2 x3) x5 ⟶ ∀ x6 : ι → ι → ι . (∀ x7 . x7 ∈ {x8 ∈ x0|ap x4 x8 = ap x5 x8} ⟶ ∀ x8 . x8 ∈ {x9 ∈ x0|ap x4 x9 = ap x5 x9} ⟶ x1 x7 x8 = x6 x7 x8) ⟶ explicit_Group {x7 ∈ x0|ap x4 x7 = ap x5 x7} x6 |
|