∀ x0 : (ι → ι → ι) → (((ι → ι → ι) → ι) → ι → ι) → ι . ∀ x1 : ((ι → ι) → (ι → (ι → ι) → ι) → ι) → ι → ι . ∀ x2 : (((ι → (ι → ι) → ι → ι) → ι → ι → ι) → ι → ι → ι → ι → ι) → ((((ι → ι) → ι → ι) → ι) → ι → ι) → ι . ∀ x3 : ((((ι → ι) → (ι → ι) → ι → ι) → ι) → ι) → ι → ι → ι . (∀ x4 : (((ι → ι) → ι) → ι) → ((ι → ι) → ι → ι) → ι → ι → ι . ∀ x5 : ι → (ι → ι) → ι . ∀ x6 . ∀ x7 : (ι → (ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ι . x3 (λ x9 : ((ι → ι) → (ι → ι) → ι → ι) → ι . x1 (λ x10 : ι → ι . λ x11 : ι → (ι → ι) → ι . Inj1 0) (x1 (λ x10 : ι → ι . λ x11 : ι → (ι → ι) → ι . x1 (λ x12 : ι → ι . λ x13 : ι → (ι → ι) → ι . x3 (λ x14 : ((ι → ι) → (ι → ι) → ι → ι) → ι . 0) 0 0) (Inj0 0)) (x2 (λ x10 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x11 x12 x13 x14 . setsum 0 0) (λ x10 : ((ι → ι) → ι → ι) → ι . λ x11 . 0)))) (x3 (λ x9 : ((ι → ι) → (ι → ι) → ι → ι) → ι . Inj0 (x0 (λ x10 x11 . x11) (λ x10 : (ι → ι → ι) → ι . λ x11 . x1 (λ x12 : ι → ι . λ x13 : ι → (ι → ι) → ι . 0) 0))) x6 (x2 (λ x9 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x10 x11 x12 x13 . x10) (λ x9 : ((ι → ι) → ι → ι) → ι . λ x10 . x2 (λ x11 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x12 x13 x14 x15 . setsum 0 0) (λ x11 : ((ι → ι) → ι → ι) → ι . λ x12 . setsum 0 0)))) (x2 (λ x9 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x10 x11 x12 . setsum 0) (λ x9 : ((ι → ι) → ι → ι) → ι . λ x10 . x3 (λ x11 : ((ι → ι) → (ι → ι) → ι → ι) → ι . x2 (λ x12 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x13 x14 x15 x16 . x2 (λ x17 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x18 x19 x20 x21 . 0) (λ x17 : ((ι → ι) → ι → ι) → ι . λ x18 . 0)) (λ x12 : ((ι → ι) → ι → ι) → ι . λ x13 . Inj1 0)) (x0 (λ x11 x12 . Inj0 0) (λ x11 : (ι → ι → ι) → ι . λ x12 . 0)) (setsum x10 0))) = x1 (λ x9 : ι → ι . λ x10 : ι → (ι → ι) → ι . x7 (λ x11 . λ x12 : ι → ι . λ x13 . x10 (Inj0 (Inj0 0)) (λ x14 . Inj0 0)) (λ x11 : ι → ι . λ x12 . 0)) (setsum 0 (Inj1 (x3 (λ x9 : ((ι → ι) → (ι → ι) → ι → ι) → ι . x3 (λ x10 : ((ι → ι) → (ι → ι) → ι → ι) → ι . 0) 0 0) x6 (x1 (λ x9 : ι → ι . λ x10 : ι → (ι → ι) → ι . 0) 0))))) ⟶ (∀ x4 . ∀ x5 : (((ι → ι) → ι) → (ι → ι) → ι) → ι . ∀ x6 : (ι → (ι → ι) → ι) → ((ι → ι) → ι → ι) → ι → ι → ι . ∀ x7 : ι → ((ι → ι) → ι) → ι . x3 (λ x9 : ((ι → ι) → (ι → ι) → ι → ι) → ι . x0 (λ x10 x11 . setsum 0 (x2 (λ x12 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x13 x14 x15 x16 . setsum 0 0) (λ x12 : ((ι → ι) → ι → ι) → ι . λ x13 . 0))) (λ x10 : (ι → ι → ι) → ι . λ x11 . Inj1 0)) (x0 (λ x9 x10 . x10) (λ x9 : (ι → ι → ι) → ι . λ x10 . Inj0 (x9 (λ x11 x12 . setsum 0 0)))) (Inj0 (Inj0 (x0 (λ x9 x10 . Inj0 0) (λ x9 : (ι → ι → ι) → ι . λ x10 . Inj1 0)))) = Inj1 (x3 (λ x9 : ((ι → ι) → (ι → ι) → ι → ι) → ι . x5 (λ x10 : (ι → ι) → ι . λ x11 : ι → ι . 0)) (Inj0 (Inj0 0)) (x5 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . x7 (x3 (λ x11 : ((ι → ι) → (ι → ι) → ι → ι) → ι . 0) 0 0) (λ x11 : ι → ι . Inj0 0))))) ⟶ (∀ x4 x5 . ∀ x6 x7 : ι → ι . x2 (λ x9 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x10 x11 x12 x13 . x11) (λ x9 : ((ι → ι) → ι → ι) → ι . λ x10 . Inj1 (setsum (x7 (x3 (λ x11 : ((ι → ι) → (ι → ι) → ι → ι) → ι . 0) 0 0)) 0)) = Inj1 (x0 (λ x9 x10 . x6 0) (λ x9 : (ι → ι → ι) → ι . λ x10 . x7 (x9 (λ x11 x12 . Inj0 0))))) ⟶ (∀ x4 x5 . ∀ x6 x7 : (ι → ι) → ι . x2 (λ x9 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x10 x11 x12 x13 . 0) (λ x9 : ((ι → ι) → ι → ι) → ι . λ x10 . x7 (λ x11 . setsum (x9 (λ x12 : ι → ι . λ x13 . x0 (λ x14 x15 . 0) (λ x14 : (ι → ι → ι) → ι . λ x15 . 0))) 0)) = x7 (λ x9 . x0 (λ x10 x11 . x9) (λ x10 : (ι → ι → ι) → ι . λ x11 . 0))) ⟶ (∀ x4 : ι → ι . ∀ x5 . ∀ x6 : (((ι → ι) → ι → ι) → (ι → ι) → ι) → (ι → ι) → ι . ∀ x7 : ι → (ι → ι) → ι → ι → ι . x1 (λ x9 : ι → ι . λ x10 : ι → (ι → ι) → ι . 0) 0 = x4 (x4 0)) ⟶ (∀ x4 : ι → ι . ∀ x5 x6 : ι → ι → ι . ∀ x7 . x1 (λ x9 : ι → ι . λ x10 : ι → (ι → ι) → ι . x10 (Inj1 (setsum (Inj0 0) 0)) (λ x11 . 0)) (setsum (x2 (λ x9 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x10 x11 x12 x13 . 0) (λ x9 : ((ι → ι) → ι → ι) → ι . λ x10 . x2 (λ x11 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x12 x13 x14 x15 . x0 (λ x16 x17 . 0) (λ x16 : (ι → ι → ι) → ι . λ x17 . 0)) (λ x11 : ((ι → ι) → ι → ι) → ι . λ x12 . 0))) 0) = x5 (Inj1 (setsum 0 (Inj0 (Inj1 0)))) (x4 0)) ⟶ (∀ x4 : ι → ι . ∀ x5 . ∀ x6 : ι → ι . ∀ x7 : (ι → (ι → ι) → ι) → ι → ι . x0 (λ x9 x10 . setsum (x2 (λ x11 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x12 x13 x14 x15 . setsum 0 0) (λ x11 : ((ι → ι) → ι → ι) → ι . λ x12 . 0)) (setsum (x3 (λ x11 : ((ι → ι) → (ι → ι) → ι → ι) → ι . x2 (λ x12 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x13 x14 x15 x16 . 0) (λ x12 : ((ι → ι) → ι → ι) → ι . λ x13 . 0)) x10 (Inj0 0)) (setsum (x3 (λ x11 : ((ι → ι) → (ι → ι) → ι → ι) → ι . 0) 0 0) (x7 (λ x11 . λ x12 : ι → ι . 0) 0)))) (λ x9 : (ι → ι → ι) → ι . λ x10 . Inj1 0) = x4 0) ⟶ (∀ x4 . ∀ x5 : (((ι → ι) → ι) → ι) → (ι → ι → ι) → ι → ι → ι . ∀ x6 : (ι → (ι → ι) → ι → ι) → (ι → ι) → (ι → ι) → ι → ι . ∀ x7 : (((ι → ι) → ι) → (ι → ι) → ι → ι) → (ι → ι) → ι . x0 (λ x9 x10 . x2 (λ x11 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x12 x13 x14 x15 . 0) (λ x11 : ((ι → ι) → ι → ι) → ι . λ x12 . x3 (λ x13 : ((ι → ι) → (ι → ι) → ι → ι) → ι . x2 (λ x14 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x15 x16 x17 x18 . x16) (λ x14 : ((ι → ι) → ι → ι) → ι . λ x15 . setsum 0 0)) 0 (setsum 0 0))) (λ x9 : (ι → ι → ι) → ι . λ x10 . Inj1 (x7 (λ x11 : (ι → ι) → ι . λ x12 : ι → ι . λ x13 . x0 (λ x14 x15 . setsum 0 0) (λ x14 : (ι → ι → ι) → ι . λ x15 . x15)) (λ x11 . x9 (λ x12 x13 . 0)))) = x2 (λ x9 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x10 x11 x12 x13 . setsum (x0 (λ x14 x15 . 0) (λ x14 : (ι → ι → ι) → ι . λ x15 . setsum 0 0)) (x3 (λ x14 : ((ι → ι) → (ι → ι) → ι → ι) → ι . setsum x11 (x14 (λ x15 x16 : ι → ι . λ x17 . 0))) 0 (setsum (setsum 0 0) 0))) (λ x9 : ((ι → ι) → ι → ι) → ι . λ x10 . Inj0 (x1 (λ x11 : ι → ι . λ x12 : ι → (ι → ι) → ι . Inj0 (setsum 0 0)) (x2 (λ x11 : (ι → (ι → ι) → ι → ι) → ι → ι → ι . λ x12 x13 x14 x15 . x12) (λ x11 : ((ι → ι) → ι → ι) → ι . λ x12 . x10))))) ⟶ False |
|