Search for blocks/addresses/...

Proofgold Proposition

∀ x0 : ο . (wceq cmsub (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . co (cfv (cv x1) cmrex) (cfv (cv x1) cmvar) cpm) (λ x2 . cmpt (λ x3 . cfv (cv x1) cmex) (λ x3 . cop (cfv (cv x3) c1st) (cfv (cfv (cv x3) c2nd) (cfv (cv x2) (cfv (cv x1) cmrsub)))))))wceq cmvh (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cv x1) cmvar) (λ x2 . cop (cfv (cv x2) (cfv (cv x1) cmty)) (cs1 (cv x2)))))wceq cmpst (cmpt (λ x1 . cvv) (λ x1 . cxp (cxp (crab (λ x2 . wceq (ccnv (cv x2)) (cv x2)) (λ x2 . cpw (cfv (cv x1) cmdv))) (cin (cpw (cfv (cv x1) cmex)) cfn)) (cfv (cv x1) cmex)))wceq cmsr (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cv x1) cmpst) (λ x2 . csb (cfv (cfv (cv x2) c1st) c2nd) (λ x3 . csb (cfv (cv x2) c2nd) (λ x4 . cotp (cin (cfv (cfv (cv x2) c1st) c1st) (csb (cuni (cima (cfv (cv x1) cmvrs) (cun (cv x3) (csn (cv x4))))) (λ x5 . cxp (cv x5) (cv x5)))) (cv x3) (cv x4))))))wceq cmsta (cmpt (λ x1 . cvv) (λ x1 . crn (cfv (cv x1) cmsr)))wceq cmfs (cab (λ x1 . wa (wa (wceq (cin (cfv (cv x1) cmcn) (cfv (cv x1) cmvar)) c0) (wf (cfv (cv x1) cmvar) (cfv (cv x1) cmtc) (cfv (cv x1) cmty))) (wa (wss (cfv (cv x1) cmax) (cfv (cv x1) cmsta)) (wral (λ x2 . wn (wcel (cima (ccnv (cfv (cv x1) cmty)) (csn (cv x2))) cfn)) (λ x2 . cfv (cv x1) cmvt)))))wceq cmcls (cmpt (λ x1 . cvv) (λ x1 . cmpt2 (λ x2 x3 . cpw (cfv (cv x1) cmdv)) (λ x2 x3 . cpw (cfv (cv x1) cmex)) (λ x2 x3 . cint (cab (λ x4 . wa (wss (cun (cv x3) (crn (cfv (cv x1) cmvh))) (cv x4)) (∀ x5 x6 x7 . wcel (cotp (cv x5) (cv x6) (cv x7)) (cfv (cv x1) cmax)wral (λ x8 . wa (wss (cima (cv x8) (cun (cv x6) (crn (cfv (cv x1) cmvh)))) (cv x4)) (∀ x9 x10 . wbr (cv x9) (cv x10) (cv x5)wss (cxp (cfv (cfv (cfv (cv x9) (cfv (cv x1) cmvh)) (cv x8)) (cfv (cv x1) cmvrs)) (cfv (cfv (cfv (cv x10) (cfv (cv x1) cmvh)) (cv x8)) (cfv (cv x1) cmvrs))) (cv x2))wcel (cfv (cv x7) (cv x8)) (cv x4)) (λ x8 . crn (cfv (cv x1) cmsub))))))))wceq cmpps (cmpt (λ x1 . cvv) (λ x1 . coprab (λ x2 x3 x4 . wa (wcel (cotp (cv x2) (cv x3) (cv x4)) (cfv (cv x1) cmpst)) (wcel (cv x4) (co (cv x2) (cv x3) (cfv (cv x1) cmcls))))))wceq cmthm (cmpt (λ x1 . cvv) (λ x1 . cima (ccnv (cfv (cv x1) cmsr)) (cima (cfv (cv x1) cmsr) (cfv (cv x1) cmpps))))wceq cm0s (cmpt (λ x1 . cvv) (λ x1 . cotp c0 c0 (cv x1)))wceq cmsa (cmpt (λ x1 . cvv) (λ x1 . crab (λ x2 . w3a (wcel (cfv (cv x2) cm0s) (cfv (cv x1) cmax)) (wcel (cfv (cv x2) c1st) (cfv (cv x1) cmvt)) (wfun (cres (ccnv (cfv (cv x2) c2nd)) (cfv (cv x1) cmvar)))) (λ x2 . cfv (cv x1) cmex)))wceq cmwgfs (crab (λ x1 . ∀ x2 x3 x4 . wa (wcel (cotp (cv x2) (cv x3) (cv x4)) (cfv (cv x1) cmax)) (wcel (cfv (cv x4) c1st) (cfv (cv x1) cmvt))wrex (λ x5 . wcel (cv x4) (cima (cv x5) (cfv (cv x1) cmsa))) (λ x5 . crn (cfv (cv x1) cmsub))) (λ x1 . cmfs))wceq cmsy (cslot c6)wceq cmtree (cmpt (λ x1 . cvv) (λ x1 . cmpt2 (λ x2 x3 . cpw (cfv (cv x1) cmdv)) (λ x2 x3 . cpw (cfv (cv x1) cmex)) (λ x2 x3 . cint (cab (λ x4 . w3a (wral (λ x5 . wbr (cv x5) (cop (cfv (cv x5) cm0s) c0) (cv x4)) (λ x5 . crn (cfv (cv x1) cmvh))) (wral (λ x5 . wbr (cv x5) (cop (cfv (cotp (cv x2) (cv x3) (cv x5)) (cfv (cv x1) cmsr)) c0) (cv x4)) (λ x5 . cv x3)) (∀ x5 x6 x7 . wcel (cotp (cv x5) (cv x6) (cv x7)) (cfv (cv x1) cmax)wral (λ x8 . (∀ x9 x10 . wbr (cv x9) (cv x10) (cv x5)wss (cxp (cfv (cfv (cfv (cv x9) (cfv (cv x1) cmvh)) (cv x8)) (cfv (cv x1) cmvrs)) (cfv (cfv (cfv (cv x10) (cfv (cv x1) cmvh)) (cv x8)) (cfv (cv x1) cmvrs))) (cv x2))wss (cxp (csn (cfv (cv x7) (cv x8))) (cixp (λ x9 . cun (cv x6) (cima (cfv (cv x1) cmvh) (cuni (cima (cfv (cv x1) cmvrs) (cun (cv x6) (csn (cv x7))))))) (λ x9 . cima (cv x4) (csn (cfv (cv x9) (cv x8)))))) (cv x4)) (λ x8 . crn (cfv (cv x1) cmsub))))))))wceq cmst (cmpt (λ x1 . cvv) (λ x1 . cres (co c0 c0 (cfv (cv x1) cmtree)) (cres (cfv (cv x1) cmex) (cfv (cv x1) cmvt))))wceq cmsax (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cv x1) cmsa) (λ x2 . cima (cfv (cv x1) cmvh) (cfv (cv x2) (cfv (cv x1) cmvrs)))))wceq cmufs (crab (λ x1 . wfun (cfv (cv x1) cmst)) (λ x1 . cmgfs))wceq cmuv (cslot c7)x0)x0
type
prop
theory
SetMM
name
df_msub__df_mvh__df_mpst__df_msr__df_msta__df_mfs__df_mcls__df_mpps__df_mthm__df_m0s__df_msa__df_mwgfs__df_msyn__df_mtree__df_mst__df_msax__df_mufs__df_muv
proof
PUV1k..
Megalodon
-
proofgold address
TMR48..
creator
36224 PrCmT../0e9a6..
owner
36224 PrCmT../0e9a6..
term root
e487b..