∀ x0 : (ι → ο) → ο . (∀ x1 : ι → ο . (∀ x2 : (ι → ο) → ο . (∀ x3 : ι → ο . x2 x3 ⟶ x2 (λ x4 . and (x3 x4) (x4 = prim0 x3 ⟶ ∀ x5 : ο . x5))) ⟶ (∀ x3 : (ι → ο) → ο . (∀ x4 : ι → ο . x3 x4 ⟶ x2 x4) ⟶ x2 (Descr_Vo1 x3)) ⟶ x2 x1) ⟶ x0 x1 ⟶ x0 (λ x2 . and (x1 x2) (x2 = prim0 x1 ⟶ ∀ x3 : ο . x3))) ⟶ (∀ x1 : (ι → ο) → ο . (∀ x2 : ι → ο . x1 x2 ⟶ ∀ x3 : (ι → ο) → ο . (∀ x4 : ι → ο . x3 x4 ⟶ x3 (λ x5 . and (x4 x5) (x5 = prim0 x4 ⟶ ∀ x6 : ο . x6))) ⟶ (∀ x4 : (ι → ο) → ο . (∀ x5 : ι → ο . x4 x5 ⟶ x3 x5) ⟶ x3 (Descr_Vo1 x4)) ⟶ x3 x2) ⟶ (∀ x2 : ι → ο . x1 x2 ⟶ x0 x2) ⟶ x0 (Descr_Vo1 x1)) ⟶ ∀ x1 : ι → ο . (∀ x2 : (ι → ο) → ο . (∀ x3 : ι → ο . x2 x3 ⟶ x2 (λ x4 . and (x3 x4) (x4 = prim0 x3 ⟶ ∀ x5 : ο . x5))) ⟶ (∀ x3 : (ι → ο) → ο . (∀ x4 : ι → ο . x3 x4 ⟶ x2 x4) ⟶ x2 (Descr_Vo1 x3)) ⟶ x2 x1) ⟶ x0 x1 |
|