Search for blocks/addresses/...
Proofgold Proposition
∀ x0 .
explicit_Group_identity
{x2 ∈
setexp
x0
x0
|
bij
x0
x0
(
ap
x2
)
}
(
λ x2 x3 .
lam
x0
(
λ x4 .
ap
x3
(
ap
x2
x4
)
)
)
=
lam
x0
(
λ x2 .
x2
)
type
prop
theory
HotG
name
explicit_Group_symgroup_id_eq
proof
PUMaE..
Megalodon
explicit_Group_symgroup_id_eq
proofgold address
TMXkz..
explicit_Group_symgroup_id_eq
creator
4924
Pr6Pc..
/
ccaad..
owner
4924
Pr6Pc..
/
ccaad..
term root
21cf5..