vout |
---|
PrAa9../c9936.. 5.42 barsTMJNL../e083e.. ownership of 8c2ea.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMV6K../34f47.. ownership of 17f2e.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMWGH../5cff4.. ownership of 80a23.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMPrv../90e18.. ownership of dc688.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMXvS../32e1f.. ownership of 58df9.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMQBr../6e294.. ownership of 6b47d.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMR8K../b9166.. ownership of 11aa7.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMWca../1dc0f.. ownership of 6c52e.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMZwp../25821.. ownership of 2fa40.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMNdj../aac5d.. ownership of a01ff.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMPAi../e2e48.. ownership of 7b7b5.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMNnd../22157.. ownership of d09b9.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMGXu../b6923.. ownership of 366f2.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMTrm../41e9a.. ownership of 3b4d6.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMTSR../fec2d.. ownership of ad9b7.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMbXH../3d9e4.. ownership of b5cde.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMYXf../dac36.. ownership of e6374.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMcsa../58c57.. ownership of b1c11.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMchT../81d90.. ownership of 82de4.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMbt4../336d1.. ownership of 97791.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMdqs../1d24a.. ownership of 78083.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMbmy../fd525.. ownership of b166c.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMd4p../f4381.. ownership of 55afc.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMJj8../edf02.. ownership of 805b0.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMcUe../ef613.. ownership of cdec3.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMXuH../6f8c5.. ownership of 27c63.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMPWG../bd1c2.. ownership of d4a91.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMQZc../a4f5e.. ownership of 3603a.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMTHb../59cd1.. ownership of 56712.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMF9H../69e42.. ownership of de69f.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMZDn../14c82.. ownership of 14bac.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMT4q../ea340.. ownership of ba118.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMdfa../c91c4.. ownership of 8a1ac.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMbQT../99eb4.. ownership of 73a78.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMPAq../9d5bb.. ownership of 65a4d.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMNvq../2e3e1.. ownership of 480dc.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMGdd../0878a.. ownership of f7ca7.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMJxZ../98afd.. ownership of 44eca.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMVDe../989db.. ownership of 92fce.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMMm4../8695a.. ownership of eabf3.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMZVu../18521.. ownership of 47a47.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMLin../79bd0.. ownership of 60ca9.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMbX7../f1bcc.. ownership of 25f70.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMUYC../04d1c.. ownership of 2d187.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMFxh../8f42d.. ownership of 15bb0.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMLck../2c349.. ownership of 74d7c.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TML1g../8c84b.. ownership of 005bf.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMUrV../64917.. ownership of 33a25.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMT4L../9c4af.. ownership of f1d76.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMRLC../2f33f.. ownership of 6c6b2.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMJWh../030a8.. ownership of b4182.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMFPp../1d476.. ownership of 2288e.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMZJp../543a8.. ownership of 09a8d.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMTMT../1ac47.. ownership of 4acbb.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMVVs../53f8a.. ownership of 9b328.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TML2S../d7005.. ownership of 71fb7.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMHvx../ff0b6.. ownership of 521cb.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMWXa../cfdd8.. ownership of dacf7.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMJ89../a9641.. ownership of 8e1b0.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMboX../e99e8.. ownership of 83088.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMTXa../f3b6d.. ownership of 9bb69.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMbnY../426a5.. ownership of 49368.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMWqL../34824.. ownership of 72568.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMNHP../b6009.. ownership of f2ecc.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMNqU../ec96b.. ownership of fb74d.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMHSA../de4c7.. ownership of dbc71.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMJya../664f7.. ownership of 6f341.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMR28../2d067.. ownership of 85734.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMX3r../18642.. ownership of a8fd7.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMLYs../c870e.. ownership of 2bc6b.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMVCR../e51b8.. ownership of 5a706.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMc66../e4ec9.. ownership of 71482.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMGCj../855be.. ownership of 30284.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMUbR../45f53.. ownership of 70169.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMK85../ed403.. ownership of 0d9d2.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMW8T../495fb.. ownership of 26663.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMNsk../06211.. ownership of 17b5e.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMKoe../731ea.. ownership of af5aa.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMRhh../985eb.. ownership of 387d2.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMVpA../31e44.. ownership of 4402c.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMSQM../0bd10.. ownership of 696da.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMaKv../82f29.. ownership of 936e5.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMdPX../139c8.. ownership of d63ce.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMGBa../e3c46.. ownership of 3aca1.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMTFx../a38ef.. ownership of d3b5b.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMJ14../7eb69.. ownership of 6d7d2.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMUXJ../b0da0.. ownership of 9ba1d.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMPmC../51fd0.. ownership of f97b5.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMTGT../7f9ca.. ownership of 9fbf6.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMMpd../3c2d1.. ownership of daf63.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMXtY../b6236.. ownership of df7cd.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMQHN../61fa8.. ownership of 0c274.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMU8A../0c70a.. ownership of 209c8.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMKdZ../72548.. ownership of 740c3.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMQFH../e44ea.. ownership of 3a13f.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMM6K../f4cf3.. ownership of 01b85.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMY2y../68fc9.. ownership of f87dc.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMKfA../9ce22.. ownership of f0b76.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMc3s../87dbf.. ownership of 0d20b.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMNeF../1e15a.. ownership of 9551c.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMUcL../16788.. ownership of 30837.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMWse../4074b.. ownership of 8b1fc.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMaey../ab988.. ownership of 92560.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMFU2../b5278.. ownership of 94d0b.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMKpJ../4c983.. ownership of 0c618.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMFDS../1c1da.. ownership of 37d92.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMHha../19c3d.. ownership of a1ee1.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMd7x../044a6.. ownership of efae6.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMWwN../33861.. ownership of 495ba.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMWJn../e6f92.. ownership of 11e96.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMFkC../4daf2.. ownership of 000b3.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMLyK../24824.. ownership of 0e974.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMXjd../2c320.. ownership of 4c672.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMQvj../42f70.. ownership of 7e908.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMVYR../4049b.. ownership of 2a73e.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMGSc../6a63d.. ownership of 57b72.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMLz5../9a4ef.. ownership of d3eb2.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMF7D../8c123.. ownership of f348c.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMNNn../8d395.. ownership of cbdc2.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMLCe../9f10c.. ownership of e0326.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMKYw../21a77.. ownership of c0c54.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMUgS../7e3e5.. ownership of 9b088.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMJ1j../a9eac.. ownership of 75b00.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMTL4../d078d.. ownership of 51504.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMSqd../70d89.. ownership of 93eac.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMa4i../a2aa8.. ownership of 2ce9a.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMPhc../edcea.. ownership of 45f87.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMU9H../336d0.. ownership of 6df80.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0PUbyh../03523.. doc published by Pr5Zc..Theorem 45f87.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x1 x2 (x1 x3 (x1 x4 x5)) = x1 x3 (x1 x4 (x1 x2 x5)) (proof)Theorem 93eac.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 x6))) = x1 x3 (x1 x4 (x1 x5 (x1 x2 x6))) (proof)Theorem 75b00.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x7)))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x2 x7)))) (proof)Theorem c0c54.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x8))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x2 x8))))) (proof)Theorem cbdc2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x2 x9)))))) (proof)Theorem d3eb2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 x10))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x2 x10))))))) (proof)Theorem 2a73e.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 x11)))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x2 x11)))))))) (proof)Theorem 4c672.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 x12))))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x2 x12))))))))) (proof)Theorem 000b3.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 x13)))))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x2 x13)))))))))) (proof)Theorem 495ba.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 x14))))))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x2 x14))))))))))) (proof)Theorem a1ee1.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 x15)))))))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x2 x15)))))))))))) (proof)Theorem 0c618.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 x16))))))))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x2 x16))))))))))))) (proof)Theorem 92560.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 x17)))))))))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x2 x17)))))))))))))) (proof)Theorem 30837.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x0 x18 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 x18))))))))))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 (x1 x2 x18))))))))))))))) (proof)Theorem 0d20b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 x6))) = x1 x4 (x1 x5 (x1 x2 (x1 x3 x6))) (proof)Theorem f87dc.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x7)))) = x1 x4 (x1 x5 (x1 x6 (x1 x2 (x1 x3 x7)))) (proof)Theorem 3a13f.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x8))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x2 (x1 x3 x8))))) (proof)Theorem 209c8.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x8))))) = x1 x5 (x1 x6 (x1 x7 (x1 x2 (x1 x3 (x1 x4 x8))))) (proof)Theorem df7cd.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x2 (x1 x3 x9)))))) (proof)Theorem 9fbf6.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x2 (x1 x3 (x1 x4 x9)))))) (proof)Theorem 9ba1d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 x10))))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x2 (x1 x3 x10))))))) (proof)Theorem d3b5b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 x10))))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x2 (x1 x3 (x1 x4 x10))))))) (proof)Theorem d63ce.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 x10))))))) = x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x2 (x1 x3 (x1 x4 (x1 x5 x10))))))) (proof)Theorem 696da.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 x11)))))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x2 (x1 x3 x11)))))))) (proof)Theorem 387d2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 x11)))))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x2 (x1 x3 (x1 x4 x11)))))))) (proof)Theorem 17b5e.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 x11)))))))) = x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x2 (x1 x3 (x1 x4 (x1 x5 x11)))))))) (proof)Theorem 0d9d2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 x12))))))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x2 (x1 x3 x12))))))))) (proof)Theorem 30284.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 x12))))))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x2 (x1 x3 (x1 x4 x12))))))))) (proof)Theorem 5a706.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 x12))))))))) = x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x2 (x1 x3 (x1 x4 (x1 x5 x12))))))))) (proof)Theorem a8fd7.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 x12))))))))) = x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x12))))))))) (proof)Theorem 6f341.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 x13)))))))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x2 (x1 x3 x13)))))))))) (proof)Theorem fb74d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 x13)))))))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x2 (x1 x3 (x1 x4 x13)))))))))) (proof)Theorem 72568.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 x13)))))))))) = x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x2 (x1 x3 (x1 x4 (x1 x5 x13)))))))))) (proof)Theorem 9bb69.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 x13)))))))))) = x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x13)))))))))) (proof)Theorem 8e1b0.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 x14))))))))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x2 (x1 x3 x14))))))))))) (proof)Theorem 521cb.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 x14))))))))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x2 (x1 x3 (x1 x4 x14))))))))))) (proof)Theorem 9b328.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 x14))))))))))) = x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x2 (x1 x3 (x1 x4 (x1 x5 x14))))))))))) (proof)Theorem 09a8d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 x14))))))))))) = x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x14))))))))))) (proof)Theorem b4182.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 x14))))))))))) = x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x14))))))))))) (proof)Theorem f1d76.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 x15)))))))))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x2 (x1 x3 x15)))))))))))) (proof)Theorem 005bf.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 x15)))))))))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x2 (x1 x3 (x1 x4 x15)))))))))))) (proof)Theorem 15bb0.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 x15)))))))))))) = x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x2 (x1 x3 (x1 x4 (x1 x5 x15)))))))))))) (proof)Theorem 25f70.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 x15)))))))))))) = x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x15)))))))))))) (proof)Theorem 47a47.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 x15)))))))))))) = x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x15)))))))))))) (proof)Theorem 92fce.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 x16))))))))))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x2 (x1 x3 x16))))))))))))) (proof)Theorem f7ca7.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 x16))))))))))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x2 (x1 x3 (x1 x4 x16))))))))))))) (proof)Theorem 65a4d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 x16))))))))))))) = x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x2 (x1 x3 (x1 x4 (x1 x5 x16))))))))))))) (proof)Theorem 8a1ac.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 x16))))))))))))) = x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x16))))))))))))) (proof)Theorem 14bac.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 x16))))))))))))) = x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x16))))))))))))) (proof)Theorem 56712.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 x16))))))))))))) = x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x16))))))))))))) (proof)Theorem d4a91.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 x17)))))))))))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x2 (x1 x3 x17)))))))))))))) (proof)Theorem cdec3.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 x17)))))))))))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x2 (x1 x3 (x1 x4 x17)))))))))))))) (proof)Theorem 55afc.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 x17)))))))))))))) = x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x2 (x1 x3 (x1 x4 (x1 x5 x17)))))))))))))) (proof)Theorem 78083.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 x17)))))))))))))) = x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x17)))))))))))))) (proof)Theorem 82de4.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 x17)))))))))))))) = x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x17)))))))))))))) (proof)Theorem e6374.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 x17)))))))))))))) = x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x17)))))))))))))) (proof)Theorem ad9b7.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x0 x18 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 x18))))))))))))))) = x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 (x1 x2 (x1 x3 x18))))))))))))))) (proof)Theorem 366f2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x0 x18 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 x18))))))))))))))) = x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 (x1 x2 (x1 x3 (x1 x4 x18))))))))))))))) (proof)Theorem 7b7b5.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x0 x18 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 x18))))))))))))))) = x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 (x1 x2 (x1 x3 (x1 x4 (x1 x5 x18))))))))))))))) (proof)Theorem 2fa40.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x0 x18 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 x18))))))))))))))) = x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x18))))))))))))))) (proof)Theorem 11aa7.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x0 x18 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 x18))))))))))))))) = x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x18))))))))))))))) (proof)Theorem 58df9.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x0 x18 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 x18))))))))))))))) = x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x18))))))))))))))) (proof)Theorem 80a23.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x0 x18 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 x18))))))))))))))) = x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 (x1 x17 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 x18))))))))))))))) (proof)Theorem 8c2ea.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x1 x2 (x1 x3 (x1 x4 x5)) = x1 x4 (x1 x3 (x1 x2 x5)) (proof) |
|