Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrCSA..
/
a5ec3..
PUK2V..
/
b2e32..
vout
PrCSA..
/
401f4..
0.01 bars
TMPah..
/
60972..
ownership of
5232a..
as prop with payaddr
PrJJf..
rights free controlledby
PrJJf..
upto 0
TMWkD..
/
66ec5..
ownership of
73807..
as prop with payaddr
PrJJf..
rights free controlledby
PrJJf..
upto 0
TMNGM..
/
5f4d3..
ownership of
a5e64..
as prop with payaddr
PrJJf..
rights free controlledby
PrJJf..
upto 0
TMb5a..
/
17aee..
ownership of
2fa68..
as prop with payaddr
PrJJf..
rights free controlledby
PrJJf..
upto 0
TMVJ9..
/
971e0..
ownership of
0b2fd..
as prop with payaddr
PrJJf..
rights free controlledby
PrJJf..
upto 0
TMXY6..
/
e59b0..
ownership of
497ad..
as prop with payaddr
PrJJf..
rights free controlledby
PrJJf..
upto 0
TMJyt..
/
07e02..
ownership of
bc5df..
as prop with payaddr
PrJJf..
rights free controlledby
PrJJf..
upto 0
TMXD1..
/
dd6e6..
ownership of
1bbd1..
as prop with payaddr
PrJJf..
rights free controlledby
PrJJf..
upto 0
TMSpB..
/
053cc..
ownership of
0ff1b..
as prop with payaddr
PrJJf..
rights free controlledby
PrJJf..
upto 0
TMEwC..
/
489f3..
ownership of
f900d..
as prop with payaddr
PrJJf..
rights free controlledby
PrJJf..
upto 0
TMaWT..
/
be701..
ownership of
451e3..
as prop with payaddr
PrJJf..
rights free controlledby
PrJJf..
upto 0
TMGZo..
/
a3546..
ownership of
a7034..
as prop with payaddr
PrJJf..
rights free controlledby
PrJJf..
upto 0
TMdQ1..
/
034e8..
ownership of
ee74e..
as prop with payaddr
PrJJf..
rights free controlledby
PrJJf..
upto 0
TMW9E..
/
17a1c..
ownership of
0afb9..
as prop with payaddr
PrJJf..
rights free controlledby
PrJJf..
upto 0
TMXm5..
/
f2d2e..
ownership of
35ec9..
as prop with payaddr
PrJJf..
rights free controlledby
PrJJf..
upto 0
TMTwk..
/
485d2..
ownership of
7c940..
as prop with payaddr
PrJJf..
rights free controlledby
PrJJf..
upto 0
TMFgD..
/
b026f..
ownership of
e7295..
as prop with payaddr
PrJJf..
rights free controlledby
PrJJf..
upto 0
TMPru..
/
f13bb..
ownership of
c424c..
as prop with payaddr
PrJJf..
rights free controlledby
PrJJf..
upto 0
TMLia..
/
7c2e1..
ownership of
06486..
as prop with payaddr
PrJJf..
rights free controlledby
PrJJf..
upto 0
TMbUq..
/
fd404..
ownership of
a2c79..
as prop with payaddr
PrJJf..
rights free controlledby
PrJJf..
upto 0
TMNLo..
/
0d660..
ownership of
dd7e1..
as prop with payaddr
PrJJf..
rights free controlledby
PrJJf..
upto 0
TMPND..
/
2563a..
ownership of
2e8f8..
as prop with payaddr
PrJJf..
rights free controlledby
PrJJf..
upto 0
PUVbs..
/
4ac47..
doc published by
PrJJf..
Known
False_def
False_def
:
False
=
∀ x1 : ο .
x1
Known
True_def
True_def
:
True
=
∀ x1 : ο .
x1
⟶
x1
Known
7c02f..
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
13bcd..
iff_def
:
iff
=
λ x1 x2 : ο .
and
(
x1
⟶
x2
)
(
x2
⟶
x1
)
Known
2540e..
prop_ext
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x0
=
x1
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Known
37124..
orE
:
∀ x0 x1 : ο .
or
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
dcbd9..
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
eca40..
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
9ac15..
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Theorem
dd7e1..
:
∀ x0 : ο .
or
(
x0
=
True
)
(
x0
=
False
)
(proof)
Known
b4782..
contra
:
∀ x0 : ο .
(
not
x0
⟶
False
)
⟶
x0
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Known
37124..
orE
:
∀ x0 x1 : ο .
or
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Theorem
06486..
:
∀ x0 x1 : ο .
or
x0
x1
⟶
not
x0
⟶
x1
(proof)
Known
7c02f..
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
e7295..
:
∀ x0 x1 : ο .
x0
=
x1
⟶
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
(proof)
Known
b4782..
contra
:
∀ x0 : ο .
(
not
x0
⟶
False
)
⟶
x0
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Theorem
fcbcf..
not_all_ex_demorgan_i
:
∀ x0 :
ι → ο
.
not
(
∀ x1 .
x0
x1
)
⟶
∀ x1 : ο .
(
∀ x2 .
not
(
x0
x2
)
⟶
x1
)
⟶
x1
(proof)
Known
7c02f..
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
8106d..
notI
:
∀ x0 : ο .
(
x0
⟶
False
)
⟶
not
x0
Known
dcbd9..
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
eca40..
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
9ac15..
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Theorem
35ec9..
:
∀ x0 x1 : ο .
not
(
and
x0
x1
)
⟶
or
(
not
x0
)
(
not
x1
)
(proof)
Theorem
ee74e..
:
∀ x0 x1 : ο .
not
(
or
x0
x1
)
⟶
and
(
not
x0
)
(
not
x1
)
(proof)
Known
7c02f..
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
13bcd..
iff_def
:
iff
=
λ x1 x2 : ο .
and
(
x1
⟶
x2
)
(
x2
⟶
x1
)
Known
2540e..
prop_ext
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x0
=
x1
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Known
8106d..
notI
:
∀ x0 : ο .
(
x0
⟶
False
)
⟶
not
x0
Theorem
451e3..
:
∀ x0 x1 : ο .
not
(
x0
=
x1
)
⟶
(
x1
⟶
x0
)
⟶
not
(
x0
⟶
x1
)
(proof)
Known
8106d..
notI
:
∀ x0 : ο .
(
x0
⟶
False
)
⟶
not
x0
Theorem
5f823..
not_ex_all_demorgan_i
:
∀ x0 :
ι → ο
.
not
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
∀ x1 .
not
(
x0
x1
)
(proof)
Known
7c02f..
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
b4782..
contra
:
∀ x0 : ο .
(
not
x0
⟶
False
)
⟶
x0
Known
8106d..
notI
:
∀ x0 : ο .
(
x0
⟶
False
)
⟶
not
x0
Theorem
0ff1b..
:
∀ x0 x1 : ο .
not
(
x0
⟶
x1
)
⟶
and
x0
(
not
x1
)
(proof)
Known
5f92b..
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Theorem
5f92b..
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
(proof)
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Known
8106d..
notI
:
∀ x0 : ο .
(
x0
⟶
False
)
⟶
not
x0
Theorem
91bfe..
dnegI
:
∀ x0 : ο .
x0
⟶
not
(
not
x0
)
(proof)
Theorem
bc5df..
:
∀ x0 x1 : ο .
(
not
x0
⟶
not
x1
)
⟶
x1
⟶
x0
(proof)
Theorem
0b2fd..
:
∀ x0 x1 : ο .
(
not
x0
⟶
x1
)
⟶
not
x1
⟶
x0
(proof)
Theorem
a5e64..
:
∀ x0 x1 : ο .
(
x0
⟶
not
x1
)
⟶
x1
⟶
not
x0
(proof)
Theorem
5232a..
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
not
x1
⟶
not
x0
(proof)